www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Geometrische Konvergenzanalyse
Geometrische Konvergenzanalyse < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Konvergenzanalyse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:59 So 17.10.2010
Autor: blascowitz

Aufgabe
Sei [mm] $A=A^{T} \in \IR^{n \times n}$ [/mm] und sei [mm] $0<\lambda_{1} \leq \lambda_{2} \leq \hdots \leq \lambda_{s} [/mm] < [mm] \lambda_{s+1} \leq \hdots \leq \lambda_{n}$. [/mm]
Weiter sei $S [mm] \in \mathbb{R}^{n \times s}$ [/mm] orthogonal mit $s [mm] \leq \frac [/mm] n 2$, [mm] $\mathcal{S}$ [/mm] ein $s$-dimensionoaler Unterraum des [mm] $\mathbb R^{n}$ [/mm] mit $span(S) = [mm] \mathcal [/mm] S$.
Weiter sei [mm] $Z=[z_{1},z_{2}, \hdots, z_{s}]$, [/mm] sodass [mm] $\mathcal [/mm] Z = span(Z)$ der $A$-invariante Unterraum von $A$ bestehend aus den $s$ Eigenvektoren zu den $s$ kleinsten Eigenwerten.
Weiter sei [mm] $Z^{T}S \in \mathbb R^{s \times s}$ [/mm] invertierbar.  
Dann gilt:
[mm] $\tan(\sphericalangle (z_{j}, A^{-k}\mathcal{S})) \leq (\frac{\lambda_{j}}{\lambda_{s+1}})^{k} \tan(\sphericalangle(\mathcal{Z},\mathcal{S}))$ [/mm]

Ich habe zwei Fragen zum Beweis dieses, den ich nicht im gesamten verstehe:

Erstmal definiere ich noch, was [mm] $\sphericalangle(\mathcal{Z},\mathcal{S})$ [/mm] ist:

Seien [mm] $\sigma_{1} \geq \sigma_{2} \geq \hdots \sigma_{s} \geq [/mm] 0$ die Singulärwerte von [mm] $Z^T [/mm] S$. Dann ist [mm] $\arccos(\sigma_{s})$ [/mm] der Winkel zwischen [mm] $\mathcal{Z}$ [/mm] und  [mm] $\mathcal{S}$. [/mm]

Zuerst wird jetzt im Beweis dafür gesorgt, das [mm] $Z^T [/mm] S$ symmetrisch positiv definit ist. Dann steht im Beweis, dass [mm] $\Phi [/mm] = [mm] \arccos (\sphericalangle [/mm] (Z,  S ))$ definiert ist. [mm] \\ [/mm]
[mm] \textbf{ Folgt das nicht schon aus der Invertierbarkeit von} $Z^T [/mm] S$ [mm] \textbf{da ja alle Singulärwerte größer Null sind?} [/mm]

Dann habe ich weiter unten im Beweis noch eine Frage, deswegen poste ich mal den ganzen Zwischenteil:

Es existiert eine orthogonale Aufspaltung von $S$ in der Form:
$$ S =  Z [mm] \cos (\Phi) [/mm] + J [mm] \sin \Phi, \quad [/mm] (1)$$
wobei $ J [mm] \in \mathbb R^{n \times s}$ [/mm] eine orthonormale Matrix mit Spaltenraum in [mm] $\mathcal Z^\perp [/mm] $ ist, d.h.
$$ [mm] Z^T [/mm] J =0, [mm] J^TJ=I_{s \times s}.$$ [/mm]
Aus (1) erhält man durch Linksmultiplikation mit [mm] $A^{-k} [/mm] $ und Rechtsmultiplikation mit [mm] $(\cos \Phi)^{-1} \Lambda^k \; (\Lambda [/mm] = diag [mm] (\lambda_1,...,\lambda_s))$: [/mm]
$$ [mm] \begin{aligned} A^{-k} S (\cos \Phi)^{-1} \Lambda^k &= A^{-k}Z \Lambda^k + A^{-k} J \sin \Phi (\cos \Phi)^{-1} \Lambda^k \\ &= Z \Lambda^{-k} \Lambda^k + A^{-1} J \tan \Phi \Lambda^k \\ &= Z + A^{-k} J \tan \Phi \Lambda^k. \quad (2) \end{aligned}$$ [/mm]
Auch dies ist eine orthogonale Aufspaltung, denn
$$ [mm] Z^T A^{-k}J=(A^{-k} Z)^T [/mm] J=(Z [mm] \Lambda^{-k})^TJ=\Lambda^{-k}Z^TJ=0.$$ [/mm]

Mit [mm] $\Omega_k [/mm] = [mm] (J^T [/mm] A ^{-2k} [mm] J)^{\frac 1 2}$ [/mm] ist
[mm] $$A^{-k} [/mm] J = [mm] (A^{-k} [/mm] J [mm] \Omega_k^{-1})\Omega_k [/mm] = [mm] J_k \Omega_k. \quad [/mm] (3)$$
[mm] $J_k$ [/mm] ist orthogonal, denn
[mm] $$\begin{aligend} J_k^T J_k $= (A^{-k} J \Omega_k^{-1})^T (A^{-k} J \Omega_k^{-1}) \\ &= \Omega_,^{-1} J^T A^{-2T} J \Omega_k^{-1} \\ &= \Omega_k^{-1} \Omega_k^2 \Omega_k^{-1} = I. \end{aligend}$$ [/mm]
Für die Spektralnorm von [mm] $\Omega_k$ [/mm] gilt:
[mm] $$\begin{aligned} \| \Omega_k\|^2 &= \max_{\|x\|_2 = 1} \| \Omega_k x\|^2 \\ &= \max_{\|x\| = 1} (x, J^T A ^{-2k} J x) \\ &= \max_{\|x\| = 1}(Jx, A^{-2k}Jx) \\ &\leq \max_{y \in \mathcal Z^\perp, \|y\|=1} (y,A^{-2k}y ) \\ &\leq \left( \frac{1}{\lambda_{s+1}}\right)^{2k}. \end{aligned}$$ [/mm]

Wir betrachten die $j$-te Spalte von (2).
$$ [mm] x_j^{(k)} [/mm] = [mm] A^{-k} [/mm] S [mm] (\cos \Phi)^{-1} \lambda_j^k e_j [/mm] := [mm] z_j+ u_j \quad \mbox{mit} [/mm] $$
$$ [mm] u_j [/mm] = [mm] J_k \Omega_k \tan \Phi \lambda^k e_j \quad \mbox{wegen (3)}.$$ [/mm]
[mm] \textbf{Und was ich nicht verstehe ist, warum die folgende Ungleichung gilt:} [/mm]
[mm] $$\tan \sphericalangle (z_j, A^{-k} \mathcal [/mm] S) [mm] \leq \tan \sphericalangle (z_j, x_j^{(k)} [/mm] ).$$
Den Rest des Beweises verstehe ich dann wieder.

Vielen Dank für die Hilfe
Blascowitz


        
Bezug
Geometrische Konvergenzanalyse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 19.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de