www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gerade und Ungerade Funktionen
Gerade und Ungerade Funktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Sa 05.06.2004
Autor: nevinpol

Hallo ihr Lieben, :-)

also eigentlich mache ich ja immer dasselbe..
Frage aufschreiben und dann meine Lösung und dann Fragen stellen[anbet]

Eigentlich habe ich im Zusammenhang zu dieser Aufgabe schon
einmal eine allgemeine Frage gestellt; und auch eine Antwort bekommen.[happy]
Ich habe nun versucht diese Hilfe umzusetzen [lichtaufgegangen]
und eine Lösung zu basteln. Nun denn mal los...



Aufgabe:
Eine Funktion $f [mm] \in Abb(\IR,\IR)$ [/mm] heisst gerade, wenn $f(-t)=f(t)$ für alle $t [mm] \in \IR$, [/mm]
und ungerade, wenn $f(-t)=-f(t)$ für alle $t [mm] \in \IR$. [/mm]



Man zeige:
(a)
Die Menge [mm] $V_g$ [/mm] der geraden Funktionen, ebenso wie die Menge [mm] $V_u$ [/mm] der ungeraden
Funktionen sind Untervektorräume von [mm] $Abb(\IR,\IR)$. [/mm]

(b)
[mm] $Abb(\IR,\IR)$ [/mm] ist die direkte Summe von [mm] $V_g$ [/mm] und [mm] $V_u$. [/mm]



Meine Lösung zu (a)

[mm] [b]$V_g$ [/mm] ist ein Untervektorraum von [mm] $Abb(\IR,\IR)$[/b] [/mm]

Erste Bedingung: [mm] $V_g \ne \emptyset$ [/mm]

Sei [mm] $V_g=\{f \in Abb(\IR,\IR) | f(-t)=f(t)\}$. [/mm] Offensichtlich ist
$f [mm] \equiv [/mm] 0 [mm] \in V_g$. [/mm]

Zweite Bedingung: [mm] $f_1, f_2 \in V_g \Rightarrow f_1+f_2 \in V_g$ [/mm]

Weiter seien [mm] $f_1, f_2 \in V_g$. [/mm] Dann ist

$ [mm] (f_1 [/mm] + [mm] f_2)(-t)=f_1(-t)+f_2(-t) [/mm] =$ nach Vereinbarung $= [mm] f_1(t) [/mm] + [mm] f_2(t) [/mm] = [mm] (f_1+f_2)(t) [/mm] $,
also ist auch [mm] $f_1+f_2 \in V_g$. [/mm]


Dritte Bedingung: $f [mm] \in V_g$ [/mm] und [mm] $\lambda \in \IR \Rightarrow \lambda \cdot [/mm] f [mm] \in V_g$ [/mm]

Ist $f [mm] \in V_g$ [/mm] und [mm] $\lambda \in \IR$. [/mm] Dann gilt:
[mm] $(\lambda \cdot f)(-t)=\lambda \cdot [/mm] f(-t)=$ nach Vereinbarung $= [mm] \lambda \cdot f(t)=(\lambda \cdot [/mm] f)(t)$,
also [mm] $\lambda \cdot [/mm] f [mm] \in V_g$. [/mm]

Da alle drei Bedingungen erfüllt sind, ist [mm] $V_g$ [/mm] ein
Untervektorraum von [mm] $Abb(\IR,\IR)$. [/mm]



[mm] [b]$V_u$ [/mm] ist ein Untervektorraum von [mm] $Abb(\IR,\IR)$[/b] [/mm]

Erste Bedingung: [mm] $V_u \ne \emptyset$ [/mm]

Sei [mm] $V_u=\{f \in Abb(\IR,\IR) | f(-t)=-f(t)\}$. [/mm] Offensichtlich ist
$f [mm] \equiv [/mm] 0 [mm] \in V_u$. [/mm]

Zweite Bedingung: [mm] $f_1, f_2 \in V_u \Rightarrow f_1+f_2 \in V_u$ [/mm]

Weiter seien [mm] $f_1, f_2 \in V_u$. [/mm] Dann ist

$ [mm] (f_1 [/mm] + [mm] f_2)(-t)=f_1(-t)+f_2(-t) [/mm] =$ nach Vereinbarung $= [mm] (-f_1(t)) [/mm] + [mm] (-f_2(t)) [/mm] $
[mm] $=-(f_1(t) [/mm] + [mm] f_2(t)) [/mm] = - [mm] ((f_1 [/mm] + [mm] f_2)(t)) [/mm] = - [mm] (f_1 [/mm] + [mm] f_2)(t) [/mm]  $,
also ist auch [mm] $f_1+f_2 \in V_u$. [/mm]


Dritte Bedingung: $f [mm] \in V_u$ [/mm] und [mm] $\lambda \in \IR \Rightarrow \lambda \cdot [/mm] f [mm] \in V_u$ [/mm]

Ist $f [mm] \in V_u$ [/mm] und [mm] $\lambda \in \IR$. [/mm] Dann gilt:
[mm] $(\lambda \cdot f)(-t)=\lambda \cdot [/mm] f(-t)=$ nach Vereinbarung $= [mm] \lambda \cdot [/mm] (-f(t))$
$= - [mm] \lambda \cdot [/mm] f(t) = - [mm] (\lambda \cdot [/mm] f)(t)$,
also [mm] $\lambda \cdot [/mm] f [mm] \in V_u$. [/mm]

Da alle drei Bedingungen erfüllt sind, ist [mm] $V_u$ [/mm] ein
Untervektorraum von [mm] $Abb(\IR,\IR)$. [/mm]




Meine Lösung zu (b)


Beweis:

Es sind [mm] $V_g$ \subseteq Abb(\IR,\IR)$ [/mm] und [mm] $V_u \subseteq Abb(\IR,\IR)$ [/mm] zwei Teilräume...

...oder soll ich besser schreiben... ?

Es sind [mm] $V_g$ [/mm] und [mm] $V_u$ [/mm] Untervektorräume von $ [mm] Abb(\IR,\IR)$ [/mm] .

" [mm] $\Rightarrow$ [/mm] " :

Es sei $f [mm] \in V_g \cap V_u$, [/mm] dann sind

$f+0=f=0+f$ zwei Darstellungen von $f [mm] \in V_g [/mm] + [mm] V_u$ [/mm] und
wegen der Eindeutigkeit ist $f=0$ (und $0=f$), also das einzige Element
von [mm] $V_g \cap V_u$. [/mm]

" [mm] $\Leftarrow$ [/mm] " :

Seien [mm] $f_1+f_2=f= f_1' [/mm] + [mm] f_2'$ [/mm] zwei Darstellungen von $f [mm] \in V_g+V_u$. [/mm]

Dann ist [mm] $f_1 [/mm] - [mm] f_1' [/mm] = [mm] f_2' [/mm] - [mm] f_2$, [/mm] wobei [mm] $f_1 [/mm] - [mm] f_1' \in V_g$ [/mm] und [mm] $f_2' [/mm] - [mm] f_2 \in V_u$ [/mm] ist.

Und wegen [mm] $V_g \cap V_u=\{0\}$ [/mm] ist also

[mm] $f_1 [/mm] - [mm] f_1' [/mm] = 0 = [mm] f_2' [/mm] - [mm] f_2$, [/mm] also [mm] $f_1 [/mm] = [mm] f_1' [/mm] $ und [mm] $f_2'= f_2$, [/mm]

d.h. die Darstellung ist eindeutig.


Also ist [mm] $Abb(\IR,\IR)$ [/mm] direkte Summe von [mm] $V_g$ [/mm] und [mm] $V_u$. [/mm]



Liebe Grüsse
nevinpol



        
Bezug
Gerade und Ungerade Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 05.06.2004
Autor: Paulus

Hallo nevinpol

meiner Meinung nach hast du alles korrekt und vorbildlich gelöst. Super! :-)

Mit lieben Grüssen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de