www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden
Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: parallel oder identisch?
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 24.02.2007
Autor: jane882

Aufgabe
...

Wenn ich 2 Geraden habe, linear abhängig, und will wissen ob sie parallel oder identisch sind, was mache ich dann?

Parallel wären sie ja wenn die Richtungvektoren gleich oder ein Vielfaches voneinander bilden würden.

Wenn sie das nicht wären, wär die Geraden dann automatisch identisch? Oder kann man das auch noch irgendwie berechnen? Mit Punktprobe oder so?

Danke:)

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 24.02.2007
Autor: Trampeltier

Hallo,
du kannst di Identität sehr leicht nachprüfen. Du musst in beide Gleichungen nur den selben X-Wert einsetzen, wenn du nun den gleichen Y-Wert herausbekommst, dann wiederholst du das ganze noch einmal, machst es also mit 2 Punkten, denn eine Gerade ist ja durch 2 Punkte eindeutig bestimmt.
So würde ich die Kontrolle machen ;)
Gruß Trampel

Bezug
                
Bezug
Geraden: einsetzen
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 24.02.2007
Autor: jane882

Aufgabe
...

wenn ich jetzt die gerade hätte:

(1 2 3) + Lamnda (-1 3 1)
und

( 2 4 0)+ Mü (2 -6 -2)

Dann muss ich für Lamnda und Mü z.b. einmal 2 einsetzen und einmal 3 ?

x= 2
Punkt A( -1/8/5)
Punkt B( 6/8/-4)

x= 3
Punkt A(-2/11/6)
Punkt B( 8 /-14/-6)

so??? und nun?

Bezug
                        
Bezug
Geraden: Stützvektor verwenden
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 24.02.2007
Autor: Loddar

Hallo Jane!


Wenn Du diese beiden Geraden gegeben und bereits festgestellt hast, dass die Richtungsvektoren linear abhängig sind, setzt Du einfach den Stützvektor der einen Gerade in die Geradengleichung der anderen Geraden ein:

[mm] $g_1 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

[mm] $g_2 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \red{\vektor{2\\4\\0}}+ \mu*\vektor{2\\-6\\-2}$ [/mm]



[mm] $\Rightarrow$ $\red{\vektor{2\\4\\0}} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

Löse hier nun die 3 Gleichungen nach [mm] $\lambda [/mm] \ = \ ...$ um. Solltest Du 3-mal dasselbe Ergebnis erhalten, liegt der Punkt [mm] $A_2 [/mm] \ [mm] \left(2;4;0\right)$ [/mm] auch auf der Geraden [mm] $g_1$ [/mm] und beide Geraden [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] sind identisch.

Bei unterschiedlichen [mm] $\lambda$-Werten [/mm] sind die beiden Geraden nicht identisch; sondern "nur" parallel.


Gruß
Loddar


Bezug
                                
Bezug
Geraden: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 24.02.2007
Autor: jane882

danke:) das habe ich verstanden! kannst du mir vielleicht auch bei meiner anderen aufgaben (post: schnittpunkt) kurz helfen:(



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de