www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Geraden
Geraden < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 26.08.2012
Autor: luna19

Aufgabe
Notiere die Geradengleichung ausführlicher als Gleichung mit beiden Variablen x und y.

a)x=3 , b) x=-2  ,c)x=0 , d)y=3 , e)y+2=0 , f)y=0

Zeichne die Gerade.Welche der Punkte [mm] P_{0}(-4/3) [/mm] ......liegen auf dieser Gerade?

Hallo :)

Ich verstehe nicht,warum man zu den ersten Aufgaben eine

Geradengleichung aufstellen kann.Eine Gerade ist doch ein Graph der

linearen Funktion,aber die ersten drei Aufgaben (also a),b),c) ) gehören

nicht zur linearen Funktion.

d)

y=0x+3

e)

y=0x-2

f)

y=0x+0

2.muss ich zu jeder Aufgabe eine Gerade zeichnen?

danke !!!

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 26.08.2012
Autor: Al-Chwarizmi


> Notiere die Geradengleichung ausführlicher als Gleichung
> mit beiden Variablen x und y.
>  
> a)x=3 , b) x=-2  ,c)x=0 , d)y=3 , e)y+2=0 , f)y=0
>  
> Zeichne die Gerade.Welche der Punkte [mm]P_{0}(-4/3)[/mm]
> ......liegen auf dieser Gerade?
>  Hallo :)
>  
> Ich verstehe nicht,warum man zu den ersten Aufgaben eine
>
> Geradengleichung aufstellen kann.
> Eine Gerade ist doch ein Graph der
> linearen Funktion,

Das ist falsch. Zwar ist der Graph jeder linearen Funktion
(von [mm] \IR [/mm] nach [mm] \IR) [/mm]  eine Gerade, aber nicht jede Gerade
im [mm] \IR^2 [/mm] ist Graph einer solchen linearen Funktion.

> aber die ersten drei Aufgaben (also a),b),c) ) gehören
> nicht zur linearen Funktion.

Parallelen zur y-Achse sind aber zweifellos auch Geraden !

> d)
>  
> y=0x+3
>
> e)
>  
> y=0x-2
>  
> f)
>  
> y=0x+0
>  
> 2.muss ich zu jeder Aufgabe eine Gerade zeichnen?

das scheint verlangt zu sein
  

> danke !!!

Setze bei a),b),c)  analog einen Term mit  $\ 0*y$  dazu !
Am besten bringst du überhaupt alle vorliegenden
Gleichungen auf die einheitliche Form

      $\ A*x+B*y+C=0$

LG   Al-Chw.


Bezug
                
Bezug
Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 So 26.08.2012
Autor: luna19

im Buch steht aber,dass Parallen zur y-Achse keine Graphen  der linearen Funktion sind.

Bezug
                        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 So 26.08.2012
Autor: leduart

Hallo
x=3 ist eine Gerade, aber du hast recht, es ist Nicht graph einer linearen fkt. trotzdem gilt die Gleichung y*0+x-3=0
in der Aufgabe ist ja nur von Gleichung, nicht von graph einer fkt die Rede. allerdings kannst du es als Graph von f(y)=3 betrachten. eben x=f(y) und NICHT y=f(x)
und es ist ungewohnt, die konstante funktion als funktion zu sehen, aber es ist eine, eindeutug, gehört bei f(y)=3 zu jedem y ein Wert.
Gruss leduart

Bezug
                        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 So 26.08.2012
Autor: Al-Chwarizmi


> im Buch steht aber,dass Parallen zur y-Achse keine Graphen  
> der linearen Funktion sind.

Ja, eben !

Trotzdem ist jede Parallele zur y-Achse eine Gerade.

Du musst dich nur daran gewöhnen, dass die allgemeine
Form der Gleichung einer Geraden (im [mm] \IR^2) [/mm] so lautet:

      $\ A*x+B*y+C\ =\ 0$

wobei A, B, C reelle Zahlen sind (A und B nicht beide gleich 0).

Nur dann, wenn [mm] B\not=0 [/mm] , kann man die Gleichung nach y
auflösen und als Gleichung einer linearen Funktion [mm] x\mapsto [/mm] y
auffassen.

LG   Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de