www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden im IR³
Geraden im IR³ < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden im IR³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 So 29.01.2012
Autor: Ronjaaa

Aufgabe
Welche besondere Lage im Koordinatensystem haben die Geraden mit folgenden Gleichungen?
a) [mm] \overrightarrow{X} [/mm] = [mm] \lambda [/mm] * [mm] \vektor{1 \\ 0 \\ 1} [/mm]
b) [mm] \overrightarrow{X} [/mm] = [mm] \lambda [/mm] * [mm] \vektor{0 \\ 1 \\ 1} [/mm]
c) [mm] \overrightarrow{X} [/mm] = [mm] \lambda [/mm] * [mm] \vektor{1 \\ 1 \\ 1} [/mm]

Hallo,

mir ist das noch nicht so ganz klar, wie man diese Aufgabe löst.
Ich hätte jetzt zum Beispiel bei a) gedacht, dass ja die x2 - Koordinate 0 ist und deshalb wäre ich zu dem Entschluss gekommen, dass deshalb die Gerade parallel zur x1-x3-Ebene sein müsste. Stimmt dieser Gedankengang?
Und dann bei b) hätte ich gedacht, dass die Gerade parallel zur x2-x3-Ebene sein müsste, dadurch dass die x1-Koordinate 0 ist.
Wir haben nämlich in der Schule so etwas aufgeschrieben, dass wenn eine der drei Koordinaten 0 ist, ist die Gerade zu den Ebenen, deren Koordinate nicht 0 ist, parallel. Stimmt das hier so?
Und bei c) weiß ich es nicht, vielleicht, dass irgendwie alle Winkel zu den Ebenen gleich sind?

Würde mich über Hilfe freuen. LG Ronjaaa





        
Bezug
Geraden im IR³: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 So 29.01.2012
Autor: Al-Chwarizmi


> Welche besondere Lage im Koordinatensystem haben die
> Geraden mit folgenden Gleichungen?
>  a) [mm]\overrightarrow{X}[/mm] = [mm]\lambda[/mm] * [mm]\vektor{1 \\ 0 \\ 1}[/mm]
>  b)
> [mm]\overrightarrow{X}[/mm] = [mm]\lambda[/mm] * [mm]\vektor{0 \\ 1 \\ 1}[/mm]
>  c)
> [mm]\overrightarrow{X}[/mm] = [mm]\lambda[/mm] * [mm]\vektor{1 \\ 1 \\ 1}[/mm]
>  Hallo,
>
> mir ist das noch nicht so ganz klar, wie man diese Aufgabe
> löst.
> Ich hätte jetzt zum Beispiel bei a) gedacht, dass ja die
> x2 - Koordinate 0 ist und deshalb wäre ich zu dem
> Entschluss gekommen, dass deshalb die Gerade parallel zur
> x1-x3-Ebene sein müsste. Stimmt dieser Gedankengang?
>  Und dann bei b) hätte ich gedacht, dass die Gerade
> parallel zur x2-x3-Ebene sein müsste, dadurch dass die
> x1-Koordinate 0 ist.
> Wir haben nämlich in der Schule so etwas aufgeschrieben,
> dass wenn eine der drei Koordinaten 0 ist, ist die Gerade
> zu den Ebenen, deren Koordinate nicht 0 ist, parallel.
> Stimmt das hier so?
>  Und bei c) weiß ich es nicht, vielleicht, dass irgendwie
> alle Winkel zu den Ebenen gleich sind?
>
> Würde mich über Hilfe freuen. LG Ronjaaa


Hallo Ronja,

a) und b) : richtig - aber die Geraden sind nicht bloß parallel
zu den entsprechenden Koordinatenebenen, sondern liegen sogar
in ihnen !
Man kann sogar noch Genaueres sagen: so haben wir in a) die
Winkelhalbierende zwischen der x- und der z- Koordinatenachse,
und zwar jene mit x=z für jeden ihrer Punkte.

c) diese Gerade schließt tatsächlich mit allen 3 Koordinaten-
ebenen denselben Winkel ein, ebenso mit allen 3 Koordinaten-
Achsen. Diese Winkel könnte man berechnen und angeben.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de