www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden und Dreiecksfläche
Geraden und Dreiecksfläche < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden und Dreiecksfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Di 08.05.2007
Autor: Snoopymaus

Aufgabe
Gegeben seien 2 Punkte P(3/5/-4) und C(7/3/0)
a) Stellen Sie eine Gerade g durch P auf mit dem Richtungsvektor a= (1/-2/-2).
b)  Zeigen Sie, dass die Strecke PC senkrecht zur Geraden g ist.
c) Bestimmen Sie zwei Punkte A und B auf der Geraden g, die 3 Einheiten von P entfernt sind.
d) Welche Fläche hat das Dreieck ABC?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, bin mir so unsicher, ob alles richtig ist, insbesondere weil ich mit glattem Ergebnis gerechnet habe. Wenn mir jemand meine Fehler erklären könnte, wäre ich dankbar. Ferner habe ich den Eindruck, dass einigige meiner Zeilen trivial sind? Wäre nett mir die entsprechend zu benennen. Tausend Dank.

a)
x(t) = 3 + t
y(t) = 5 – 2t
z(t) = -4 –2t

x(t) = P + t[mm] \vec{a} [/mm]  [mm] \Rightarrow [/mm] x(t) = (3/5/-4) + t (1/-2/-2)

b) Die Parameterdarstellung der Geraden durch P(3/5/-4) und C(7/3/0) lautet
x(t) = 3 + t(7 - 3)
y(t) = 5 + t(3 - 5)
z(t) = -4 + t(0 + 4)

Die entsprechende Kurzschreibweise mit Vektoren lautet x(t) = P + t(C - P),
also x(t)= [mm] \vektor{ 3\\ 5 \\-4} [/mm] + t [mm] \vektor{ 4\\ -2 \\ 4} [/mm].

Für Orthogonalität ist man gezwungen, sowohl das Skalarprodukt auszurechenen als auch zu überprüfen, ob es überhaupt einen Schnittpunkt gibt. Richtungsvektoren der Geraden sind orthogonal heisst das Skalarprodukt ist null.

1) Schnittpunkt: (3/5/-4) + r (1/-2/-2) = (3/5/-4) + s (4/-2/4)
                                                I     r - 4s = 0 [mm] \Rightarrow [/mm] r=4s
                                                II  -2r+2s =0 [mm] \Rightarrow [/mm] r = 0, s = 0
                                                III –2r-4s =0
Setzen wir r = 0 und s = 0 in die Gleichung ein, so erhalten wir S(3| 5| -4) als Schnittpunkt.

2) Wenn zwei Geraden senkrecht aufeinanderstehen, dann zeigen sie in verschiedene "Richtungen" mit einem Winkel im Schnittpunkt, der 90° beträgt.
also:       [mm] \vec{PC} [/mm] = [mm] \vec{x} [/mm]= (7-3/3-5/0+4)=(4/-2/4)
Richtungsvektor a = (1/-2/-2)
                         ax = a1x1 + a2x2 + a3x3 = 4 + 4 - 8 = 0   qed.


C) gesucht: zwei Punkte A und B auf der Geraden g: x(t) = (3/5/-4) + t (1/-2/-2), die 3 Einheiten von P(3/5/-4)  entfernt sind.
Der Richtungsvektor zu PC b = (4/-2/4) siehe oben, g hat den Richtungsvektor a= (1/-2/-2) . Ein Normalenvektor ist dann:
I    x-2y-2z = 0 [mm] \Rightarrow [/mm] x= 2y + 2z in II
II 4x-2y+4z= 0
II ´ 8y + 8z –2y+4z=0
                 6y +12z =0
                         y   = -2z

Sei z=1 [mm] \Rightarrow [/mm] y=-2 in I ´[mm] \Rightarrow [/mm] x= -4 + 2 = -2

Normalenvektor [mm] \vec{n} [/mm] = (-2/-2/1)

Probe: [mm] \vec{n} [/mm]b = -2*4-(2*-2)+4 =-8+4+4=0 und  [mm] \vec{n} [/mm]a= -2-2*(-2)-2 = -2+4-2=0

Hilfsgerade gesucht µ, mit Betrag(µ[mm] \vec{n} [/mm]) = 3

µ [mm] \vec{n} [/mm] = (-2/-2/1)= (-2µ /-2µ /1µ)

[mm] | [/mm]-2µ /-2µ /1µ [mm] | [/mm]= 3, also:

[mm] \wurzel{(-2µ)² +(-2µ)² +µ²} [/mm]  = 3 [mm] \Rightarrow [/mm]
[mm] \wurzel{4µ² + 4µ² +µ²} [/mm] = 3
[mm] \wurzel{9µ²} [/mm] = 3  [mm] \Rightarrow [/mm] +-3µ =3 [mm] \Rightarrow [/mm] µ = +-1

[mm] \vec{d1} [/mm] = [mm] \vec{f} [/mm]+ [mm] \vec{n} [/mm] = (3/5/-4) + (-2/-2/1) = (1/3/-3)
[mm] \vec{d2} [/mm] = [mm] \vec{f} [/mm] - [mm] \vec{n} [/mm] = (3/5/-4)  - (-2/-2/1) = (5/7/-5)

Lösung: A= (1/3/-3); B = (5/7/-5)

d) Welche Fläche hat das Dreieck A= (1/3/-3); B = (5/7/-5) C(7/3/0)?

[mm] \vec{AB} [/mm] = [mm] \vektor{ 5-1\\7-3\\-5+3} [/mm]= [mm] \vektor{ 4\\ 4 \\-2 } [/mm]
[mm] \vec{AC} [/mm] = [mm] \vektor{ 7-1\\ 3-3 \\0+3} [/mm]= [mm] \vektor{ 6\\ 0\\ 3} [/mm]

Kreuzprodukt: [mm] \vec{A} [/mm] x [mm] \vec{B} [/mm] = [mm] \vektor{ 12-0\\12-12\\0-24} [/mm] = [mm] \vektor{ 12\\ 0 \\-24 } [/mm]
Fläche
= 0,5 * [mm] | [/mm](AB x AC)[mm] | [/mm]
= 0,5* [mm] | [/mm] [mm] \vektor{ 12\\ 0 \\-24 } [/mm] [mm] | [/mm]
= [mm] | [/mm] [mm] \vektor{ 6\\ 0\\ -12 } [/mm] [mm] | [/mm]

= [mm] \wurzel{36 + 0 + 144} [/mm]
=  13,42 [FE]

Lösung: Das Dreieck ABC hat den Flächeninhalt 13,42 [FE]

Gruß Snoopy

        
Bezug
Geraden und Dreiecksfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Di 08.05.2007
Autor: M.Rex

Hallo

> Gegeben seien 2 Punkte P(3/5/-4) und C(7/3/0)
>  a) Stellen Sie eine Gerade g durch P auf mit dem
> Richtungsvektor a= (1/-2/-2).
>  b)  Zeigen Sie, dass die Strecke PC senkrecht zur Geraden
> g ist.
>  c) Bestimmen Sie zwei Punkte A und B auf der Geraden g,
> die 3 Einheiten von P entfernt sind.
>  d) Welche Fläche hat das Dreieck ABC?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo, bin mir so unsicher, ob alles richtig ist,
> insbesondere weil ich mit glattem Ergebnis gerechnet habe.
> Wenn mir jemand meine Fehler erklären könnte, wäre ich
> dankbar. Ferner habe ich den Eindruck, dass einigige meiner
> Zeilen trivial sind? Wäre nett mir die entsprechend zu
> benennen. Tausend Dank.
>  
> a)
>  x(t) = 3 + t
>  y(t) = 5 – 2t
>  z(t) = -4 –2t
>
> x(t) = P + t[mm] \vec{a}[/mm]  [mm]\Rightarrow[/mm] x(t) = (3/5/-4) + t
> (1/-2/-2)

[ok]

>  
> b) Die Parameterdarstellung der Geraden durch P(3/5/-4) und
> C(7/3/0) lautet
> x(t) = 3 + t(7 - 3)
> y(t) = 5 + t(3 - 5)
>  z(t) = -4 + t(0 + 4)
>
> Die entsprechende Kurzschreibweise mit Vektoren lautet x(t)
> = P + t(C - P),
>  also x(t)= [mm]\vektor{ 3\\ 5 \\-4}[/mm] + t [mm]\vektor{ 4\\ -2 \\ 4} [/mm].
>  

[daumenhoch]

> Für Orthogonalität ist man gezwungen, sowohl das
> Skalarprodukt auszurechenen als auch zu überprüfen, ob es
> überhaupt einen Schnittpunkt gibt. Richtungsvektoren der
> Geraden sind orthogonal heisst das Skalarprodukt ist null.

>

Richtig
  

> 1) Schnittpunkt: (3/5/-4) + r (1/-2/-2) = (3/5/-4) + s
> (4/-2/4)
>                                                  I     r -
> 4s = 0 [mm]\Rightarrow[/mm] r=4s
>                                                  II  -2r+2s
> =0 [mm]\Rightarrow[/mm] r = 0, s = 0
>                                                  III –2r-4s
> =0
>  Setzen wir r = 0 und s = 0 in die Gleichung ein, so
> erhalten wir S(3| 5| -4) als Schnittpunkt.
>  

Korrekt

> 2) Wenn zwei Geraden senkrecht aufeinanderstehen, dann
> zeigen sie in verschiedene "Richtungen" mit einem Winkel im
> Schnittpunkt, der 90° beträgt.
>  also:       [mm]\vec{PC}[/mm] = [mm]\vec{x} [/mm]= (7-3/3-5/0+4)=(4/-2/4)
>  Richtungsvektor a = (1/-2/-2)
>                           ax = a1x1 + a2x2 + a3x3 = 4 + 4 -
> 8 = 0   qed.
>  

Auch richtig


>
> C) gesucht: zwei Punkte A und B auf der Geraden g: x(t) =
> (3/5/-4) + t (1/-2/-2), die 3 Einheiten von P(3/5/-4)  
> entfernt sind.
>  Der Richtungsvektor zu PC b = (4/-2/4) siehe oben, g hat
> den Richtungsvektor a= (1/-2/-2) . Ein Normalenvektor ist
> dann:
>  I    x-2y-2z = 0 [mm]\Rightarrow[/mm] x= 2y + 2z in II
>  II 4x-2y+4z= 0
>  II ´ 8y + 8z –2y+4z=0
>                   6y +12z =0
>                           y   = -2z
>  
> Sei z=1 [mm]\Rightarrow[/mm] y=-2 in I ´[mm] \Rightarrow[/mm] x= -4 + 2 = -2
>  
> Normalenvektor [mm]\vec{n}[/mm] = (-2/-2/1)
>  
> Probe: [mm]\vec{n} [/mm]b = -2*4-(2*-2)+4 =-8+4+4=0 und  [mm]\vec{n} [/mm]a=
> -2-2*(-2)-2 = -2+4-2=0
>  

Richtig, aber es geht auch einfacher: Hast du zwei Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] gegeben, und willst einen Vektor [mm] \vec{n} [/mm] haben, der senkrecht auf beiden ist, kannst du auch das Kreuzprodukt nehmen. Dann gilt: [mm] \vec{n}=\vec{a}\times\vec{b} [/mm]


> Hilfsgerade gesucht µ, mit Betrag(µ[mm] \vec{n} [/mm]) = 3
>
> µ [mm]\vec{n}[/mm] = (-2/-2/1)= (-2µ /-2µ /1µ)
>  
> [mm]| [/mm]-2µ /-2µ /1µ [mm]| [/mm]= 3, also:
>  
> [mm]\wurzel{(-2µ)² +(-2µ)² +µ²}[/mm]  = 3 [mm]\Rightarrow[/mm]
> [mm]\wurzel{4µ² + 4µ² +µ²}[/mm] = 3
>  [mm]\wurzel{9µ²}[/mm] = 3  [mm]\Rightarrow[/mm] +-3µ =3 [mm]\Rightarrow[/mm] µ = +-1
>  

Korrekt.

> [mm]\vec{d1}[/mm] = [mm]\vec{f} [/mm]+ [mm]\vec{n}[/mm] = (3/5/-4) + (-2/-2/1) =
> (1/3/-3)
>  [mm]\vec{d2}[/mm] = [mm]\vec{f}[/mm] - [mm]\vec{n}[/mm] = (3/5/-4)  - (-2/-2/1) =
> (5/7/-5)
>  
> Lösung: A= (1/3/-3); B = (5/7/-5)

Super.

>  
> d) Welche Fläche hat das Dreieck A= (1/3/-3); B = (5/7/-5)
> C(7/3/0)?
>  
> [mm]\vec{AB}[/mm] = [mm]\vektor{ 5-1\\7-3\\-5+3} [/mm]= [mm]\vektor{ 4\\ 4 \\-2 }[/mm]
>  
> [mm]\vec{AC}[/mm] = [mm]\vektor{ 7-1\\ 3-3 \\0+3} [/mm]= [mm]\vektor{ 6\\ 0\\ 3}[/mm]
>  
> Kreuzprodukt: [mm]\vec{A}[/mm] x [mm]\vec{B}[/mm] = [mm]\vektor{ 12-0\\12-12\\0-24}[/mm]
> = [mm]\vektor{ 12\\ 0 \\-24 }[/mm]
>  Fläche
> = 0,5 * [mm]| [/mm](AB x AC)[mm] |[/mm]
> = 0,5* [mm]|[/mm] [mm]\vektor{ 12\\ 0 \\-24 }[/mm] [mm]|[/mm]
>  = [mm]|[/mm] [mm]\vektor{ 6\\ 0\\ -12 }[/mm] [mm]|[/mm]
>  
> = [mm]\wurzel{36 + 0 + 144}[/mm]
> =  13,42 [FE]
>  
> Lösung: Das Dreieck ABC hat den Flächeninhalt 13,42 [FE]
>  

Das sieht sehr gut aus. [daumenhoch]


> Gruß Snoopy


Marius

Bezug
                
Bezug
Geraden und Dreiecksfläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Di 08.05.2007
Autor: Snoopymaus

Hallo Marius,

tausend Dank, ich dachte ich hätte mich vertan, weil sonst überall glatte Ergebnisse herauskamen :-)

Gruß Snoopy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de