www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Geraden und Punkte
Geraden und Punkte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden und Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Fr 05.05.2006
Autor: mathmetzsch

Aufgabe
Zeigen Sie, dass im 3-dim affinen Raum gilt: [mm] |P|=|g|^{3} [/mm] für [mm]g\in G[/mm].

Hallo,

hat zu der Aufgabe vielleicht jemand ne Idee? Muss ich hier irgendwie die Dimensionsformel benutzen? Ansonsten hätte ich dazu keine Idee!

Bitte um Hilfe!

Viele Grüße
Daniel

        
Bezug
Geraden und Punkte: eine Idee, immerhin
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 05.05.2006
Autor: statler


> Zeigen Sie, dass im 3-dim affinen Raum gilt: [mm]|P|=|g|^{3}[/mm]
> für [mm]g\in G[/mm].
>  Hallo,
>  
> hat zu der Aufgabe vielleicht jemand ne Idee?

Hallo Daniel!

Eine Gerade g wird hier als Menge von Punkten gesehen, und wenn du die Darstellung mit Stütz- und Richtungsvektor kennst, dann siehst du, das die Ordnung der Menge g gleich der Ordnung der Parametermenge ist, und das ist gerade [mm] \IR. [/mm]

Und die Punkte werden durch ihre Koordinaten beschrieben; jede Koordinate kann beliebig in [mm] \IR [/mm] liegen. Also steht auf beiden Seiten der Gleichung [mm] |\IR|^{3}. [/mm]

Ich bin beim ersten Lesen dem Irrtum erlegen, daß g die Menge der Geraden sei, aber das ist ja Quatsch.

Jetzt noch alles schön hinschreiben, mit bijektiven Abb. und so...

Gruß aus dem sonnigen HH-Harburg
Dieter


Bezug
                
Bezug
Geraden und Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Fr 05.05.2006
Autor: mathmetzsch

Hallo Dieter,

danke zunächst für die Antwort. Das bringt mich ja schon ein Stück weiter. Was genau meinst du denn mit bijektiven Abbildungen? f von der Menge der Punkte in die Menge der Geraden oder wie?

Danke, Daniel.

Bezug
                        
Bezug
Geraden und Punkte: Etwa so...
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 05.05.2006
Autor: statler

Hi Daniel,

nach meinem altertümlichen Wissen sind zwei Mengen genau dann gleich groß, wenn es eine bijektive Abb. zwischen ihnen gibt. Oder macht man das heute anders? Oder bist du so fortgeschritten, daß du einfach trivial schreiben darfst?

Mahlzeit
Dieter

Bezug
                                
Bezug
Geraden und Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Fr 05.05.2006
Autor: felixf

Hallo Dieter!

> nach meinem altertümlichen Wissen sind zwei Mengen genau
> dann gleich groß, wenn es eine bijektive Abb. zwischen
> ihnen gibt. Oder macht man das heute anders?

Nein, das macht man heute immer noch genauso :-)

LG Felix


Bezug
        
Bezug
Geraden und Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Fr 05.05.2006
Autor: felixf

Hallo!

> Zeigen Sie, dass im 3-dim affinen Raum gilt: [mm]|P|=|g|^{3}[/mm]
> für [mm]g\in G[/mm].

Also $P$ ist die Punktemenge, also $P = [mm] \IR^3$, [/mm] oder?

Also rein Mengentheoretisch ist ja $|g| = [mm] |g|^2 [/mm] = [mm] |g|^3 [/mm] = [mm] |g|^4 [/mm] = [mm] \dots$, [/mm] und das ist gleich $|P| = [mm] |P|^2 [/mm] = ...$. Also gehe ich mal davon aus das es nicht rein mengentheoretisch gemeint ist...

Vielleicht ist die Aufgabe ja, dass man eine bijektive Abbildung $P [mm] \to [/mm] g [mm] \times [/mm] g [mm] \times [/mm] g$ angeben soll, die durch rein geometrische Methoden konstruiert wird?

LG Felix


Bezug
                
Bezug
Geraden und Punkte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:03 Fr 05.05.2006
Autor: mathmetzsch

Hallo Felix, hallo Dieter,

also eine Abbildung finden. Sagen wir also [mm]f:P\to g\times g\times g[/mm].
Belibt zu zeigen, dass sie bijektiv ist? Sollte kein Problem sein. Muss ich die Abbildung nun noch konkret angeben oder genügt das so?

VG Daniel

Bezug
                        
Bezug
Geraden und Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Fr 05.05.2006
Autor: felixf

Hallo Daniel!

> also eine Abbildung finden. Sagen wir also [mm]f:P\to g\times g\times g[/mm].
> Belibt zu zeigen, dass sie bijektiv ist? Sollte kein
> Problem sein. Muss ich die Abbildung nun noch konkret
> angeben oder genügt das so?

Sorry, das hab ich jetzt nicht verstanden :-) Wenn du zeigen willst, dass sie bijektiv ist, musst du sie doch erstmal konkret angeben. Oder etwa nicht?

Beides (Abbildung angeben und Bijektivitaet zeigen) kannst du ganz geometrisch machen: Du faengst mit der Geraden $g$ an. Sei $O [mm] \in [/mm] g$ beliebig und [mm] $x_1 \in [/mm] g [mm] \setminus \{ O \}$ [/mm] beliebig. Waehle ein [mm] $x_2 \in [/mm] P [mm] \setminus [/mm] g$. Sei [mm] $E_{12}$ [/mm] die Ebene durch $O$, [mm] $x_1$ [/mm] und [mm] $x_2$. [/mm]

Nun ist der Raum dreidimensional, also gibt es ein [mm] $x_3 \in [/mm] P [mm] \setminus E_{12}$. [/mm] Sei [mm] $E_{13}$ [/mm] die Ebene durch $O$, [mm] $x_1$ [/mm] und [mm] $x_3$, [/mm] und [mm] $E_{23}$ [/mm] die Ebene durch $O$, [mm] $x_2$ [/mm] und [mm] $x_3$. [/mm]

Ist jetzt $P$ ein beliebiger Punkt, so betrachte die Ebene [mm] $E_{ij}^P$, [/mm] welche parallel zu [mm] $E_{ij}$ [/mm] liegt und welche $P$ enthaelt. Dann ist [mm] $E_{ij}^P \cap \{ x_k \} [/mm] = [mm] \{ y_k \}$ [/mm] mit $k [mm] \neq [/mm] i, j$, und so erhaelst du einen Punkt [mm] $(y_1, y_2, y_3) \in g^3$. [/mm] Damit haettest du die Abbildung definiert.

(Evtl. muss man das teilweise noch etwas ausfuehrlicher machen.)

Zeigen dass sie injektiv und surjektiv ist sollte auch nicht so schwer sein.

LG Felix


Bezug
                                
Bezug
Geraden und Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Mo 08.05.2006
Autor: felixf

Hallo Daniel!

> Beides (Abbildung angeben und Bijektivitaet zeigen) kannst
> du ganz geometrisch machen: Du faengst mit der Geraden [mm]g[/mm]
> an. Sei [mm]O \in g[/mm] beliebig und [mm]x_1 \in g \setminus \{ O \}[/mm]
> beliebig. Waehle ein [mm]x_2 \in P \setminus g[/mm]. Sei [mm]E_{12}[/mm] die
> Ebene durch [mm]O[/mm], [mm]x_1[/mm] und [mm]x_2[/mm].
>  
> Nun ist der Raum dreidimensional, also gibt es ein [mm]x_3 \in P \setminus E_{12}[/mm].
> Sei [mm]E_{13}[/mm] die Ebene durch [mm]O[/mm], [mm]x_1[/mm] und [mm]x_3[/mm], und [mm]E_{23}[/mm] die
> Ebene durch [mm]O[/mm], [mm]x_2[/mm] und [mm]x_3[/mm].

Die Konstruktion ist ab diesem Punkt noch nicht ganz vollstaendig gewesen. Ich verbesser das jetzt mal.

Sei [mm] $g_1 [/mm] := g$, sei [mm] $g_2$ [/mm] die Gerade durch $O$ und [mm] $x_2$ [/mm] und [mm] $g_3$ [/mm] die Gerade durch $O$ und [mm] $x_3$. [/mm]

Ich nehme mal an, du hast schon, dass es zu je zwei Geraden eine bijektive Abbildungen zwischen den Punkten derer gibt (anders ausgedrueckt: Je zwei Geraden haben die gleiche Anzahl von Punkten). Deswegen gibt es Bijektionen [mm] $g_2 \to [/mm] g$ und [mm] $g_3 \to [/mm] g$. Anstatt also eine Bijektion $P [mm] \to [/mm] g [mm] \times [/mm] g [mm] \times [/mm] g$ anzugeben, geben wir einfach eine $P [mm] \to g_1 \times g_2 \times g_3$ [/mm] an.

> Ist jetzt [mm]P[/mm] ein beliebiger Punkt, so betrachte die Ebene
> [mm]E_{ij}^P[/mm], welche parallel zu [mm]E_{ij}[/mm] liegt und welche [mm]P[/mm]
> enthaelt.

Dann ist [mm]E_{ij}^P \cap g_k = \{ y_k \}[/mm] mit [mm]k \neq i, j[/mm], und so erhaelst du einen Punkt [mm](y_1, y_2, y_3) \in g_1 \times g_2 \times g_3[/mm].

Zur Surjektivitaet:

Ist [mm] $(y_1, y_2, y_3) \in g_1 \times g_2 \times g_3$, [/mm] so betrachte die Ebenen [mm] $E_{ij}^k$, [/mm] welche parallel zu [mm] $E_{ij}$ [/mm] sind und welche durch [mm] $y_k$ [/mm] gehen (mit $k [mm] \neq [/mm] i, j$). Die Ebenen schneiden sich in genau einem Punkt; sei dieser mit $P$ bezeichnet. Man sieht sofort, dass $P$ durch die obige Konstruktion genau auf [mm] $(y_1, y_2, y_3)$ [/mm] abgebildet wird.

Zur Injektivitaet:

Seien $P, P'$ zwei Punkte, die beide auf [mm] $(y_1, y_2, y_3) \in g_1 \times g_2 \times g_3$ [/mm] abgebildet werden. Wenn du nun die Ebenen [mm] $E_{ij}^P$ [/mm] und [mm] $E_{ij}^{P'}$ [/mm] wie eben konstruierst, dann gilt also [mm] $E_{ij}^P \cap g_k [/mm] = [mm] \{ y_k \} [/mm] = [mm] E_{ij}^{P'} \cap g_k$, [/mm] womit [mm] $E_{ij}^P [/mm] = [mm] E_{ij}^{P'}$ [/mm] sein muss (da die Ebenen parallel sind). Wenn du nun die drei Ebenen [mm] $E_{12}^P$, $E_{13}^P$, $E_{23}^P$ [/mm] schneidest, ist die Schnittmenge genau [mm] $\{ P \}$. [/mm] Aus dem gleichen Grund ist sie aber auch gerade [mm] $\{ P' \}$ [/mm] (da [mm] $E_{ij}^P [/mm] = [mm] E_{ij}^{P'}$ [/mm] ist), womit schliesslich $P = P'$ ist.

Hier fehlen mal wieder viele Kleinigkeiten, etwa gute Begruendungen warum sich die Objekte die ich angegeben hab in genau einem Punkt schneiden etc.

LG Felix


Bezug
                                        
Bezug
Geraden und Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mo 08.05.2006
Autor: mathmetzsch

Hi Felix,

da bleibt mir nur super vielen Dank zu sagen!

VG Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de