www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Geradengleichung
Geradengleichung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Do 05.06.2008
Autor: Zuggel

Aufgabe
Die 2 Ebenen
x+y-z+1=0
2x-y+z-2=0

haben welche Gerade gemeinsam:

a) 3x-1=0 und 2x+y-z+1=0
b) 3x-1=0 und x+y-z+1=0

Hallo alle zusammen!

Nur eine kleine Frage zu einer Aufgabe die ich gerade bearbeite, und zwar: Die beiden Richtungsvektoren der Ebenen lauten:

(1,1,-1) und (2,-1,1) welche zwangsweise einen orthogonal auf die beiden Vektoren stehenden Vektor haben müssen, sonst wäre die Schnittbedingung nicht erfüllt.
Somit ergibt sich aus dem Kreuzprodukt der beiden Vektoren der Vektor (0,-3,-3).

Soweit sogut, jetzt gehts an die Lösungen a und b:

1) Lösung a hat meiner Meinung nach den Vektor:
(3,0,0) und (2,1,-1)

2) Lösung b hat die Vektoren:
(3,0,0) und (1,1,-1)

zu 1) Der Vektor der dem Kreuzprodukt entspring lautet (0,3,3)

zu 2) Der Vektor der dem Kreuzprodukt entspring lautet ebenfalls (0,3,3)

Vorweg, die Lösung b ist die Richtige, aber die Frage ist wieso. Der Vektor und dessen vielfachen sind bei beiden in der Lösung vorhanden und somit wären ja beide für die Lösung plausibel.

Hab ich etwas übersehen?

Dankesehr
lg
Zuggel

        
Bezug
Geradengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 05.06.2008
Autor: angela.h.b.


> Die 2 Ebenen
>  x+y-z+1=0
>  2x-y+z-2=0
>  
> haben welche Gerade gemeinsam:
>  
> a) 3x-1=0 und 2x+y-z+1=0
>  b) 3x-1=0 und x+y-z+1=0

Hallo,

ich würde diese Frage rein alsgebraisch angehen.

Das gegebene Gleichungsystem ist äquivalent zu Mögliichkeit b), denn aus

>  x+y-z+1=0
>  2x-y+z-2=0

erhält man, wenn man die zweite Gleichung durch 1.+2.Gleichung ersetzt, ja genau das GS von b).

Noch eins:

>  Die beiden Richtungsvektoren der Ebenen lauten: (1,1,-1) und (2,-1,1) .

Das sind nicht die Richtungs- sondern die Normalenvektoren. Die die jeweils senkrecht auf der Ebene stehen.

Gruß v. Angela


Bezug
                
Bezug
Geradengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:05 Fr 06.06.2008
Autor: Zuggel


> > Die 2 Ebenen
>  >  x+y-z+1=0
>  >  2x-y+z-2=0
>  >  
> > haben welche Gerade gemeinsam:
>  >  
> > a) 3x-1=0 und 2x+y-z+1=0
>  >  b) 3x-1=0 und x+y-z+1=0
>  
> Hallo,
>  
> ich würde diese Frage rein alsgebraisch angehen.
>  
> Das gegebene Gleichungsystem ist äquivalent zu Mögliichkeit
> b), denn aus
>
> >  x+y-z+1=0

>  >  2x-y+z-2=0
>  
> erhält man, wenn man die zweite Gleichung durch
> 1.+2.Gleichung ersetzt, ja genau das GS von b).


Ok rein algebraisch macht das natürlich Sinn. Aber wenn ich mir das ganze jetzt wieder aufs grafische zurück denke: Ich habe diese beiden Funktionen und erlange durch eine elementare Umformung einfach eine andere Möglichkeit diese Gerade auszudrücken?
Sozusagen ergeben:
3x-1=0 und x+y+z-2=0
die selbe Gerade wie
3x-1=0 und x+y-z+1=0 ?
Was mache ich, rein grafisch, wenn ich die beiden Funktionen miteinander addiere? Kann man das beschreiben oder ist das ein rein rechnerischer Vorgang der im grafischen keinen Sinn ergeben würde?

Aber rein mathematisch gesehen könnte man ja letzten Endes darüber streiten, welche der beiden Lösungen die Richtige sein wird, denn beide ergeben schließlich den Selben Vektor.



>  
> Noch eins:
>  >  Die beiden Richtungsvektoren der Ebenen lauten:
> (1,1,-1) und (2,-1,1) .
>  
> Das sind nicht die Richtungs- sondern die Normalenvektoren.
> Die die jeweils senkrecht auf der Ebene stehen.

>

Den Fehler begehe ich dauernd, Dankesehr :)

Den Richtungsvektor würde man herausbekommen indem man die Differenz der Koordinaten von 2 Punkten welche auf der Ebene liegen verwenden würde, oder?


Grüße
Zuggel

Bezug
                        
Bezug
Geradengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 10.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Geradengleichung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Do 05.06.2008
Autor: ardik

Hallo Zuggel,

> wieso. Der Vektor und dessen vielfachen sind bei beiden in
> der Lösung vorhanden

was freilich lediglich bedeutet, dass alle diese Geraden parallel sind.

Schöne Grüße
 ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de