www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geradengleichung ermitteln
Geradengleichung ermitteln < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Do 04.12.2008
Autor: Sonata1991

Aufgabe
Et: x1+(t-1)*x2+t*x3=6

Es gibt eine Gerade k, die in allen Ebenen Et liegt. Ermitteln sie eine Gleichung von k!

Ich hatte mir überlegt, dass k denselben Stützvektor wie Et haben muss, also z.B.  [mm] \vektor{6\\ 0\\0}. [/mm] Als Richtungsvekrot hatte ich dann einen Punkt genommen, der in einer vorangehenden Aufgabe berechnet werden musste und den ich richtig hatte: [mm] \vektor{0\\ 0\\6/t}. [/mm] Mein Lehrer hat es mir als falsch angestrichen, also hat jemand vielleicht eine andere Idee?

Vielen Dank schonmal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geradengleichung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Do 04.12.2008
Autor: Martinius

Hallo,

> Et: x1+(t-1)*x2+t*x3=6
>  
> Es gibt eine Gerade k, die in allen Ebenen Et liegt.
> Ermitteln sie eine Gleichung von k!
>  Ich hatte mir überlegt, dass k denselben Stützvektor wie
> Et haben muss, also z.B.  [mm]\vektor{6\\ 0\\0}.[/mm] Als
> Richtungsvekrot hatte ich dann einen Punkt genommen, der in
> einer vorangehenden Aufgabe berechnet werden musste und den
> ich richtig hatte: [mm]\vektor{0\\ 0\\6/t}.[/mm] Mein Lehrer hat es
> mir als falsch angestrichen, also hat jemand vielleicht
> eine andere Idee?
>  
> Vielen Dank schonmal!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Du könntest für t zwei ganz beliebige verschiedene Zahlen einsetzen und die beiden Ebenen dann miteinander schneiden.


LG, Martinius

Bezug
                
Bezug
Geradengleichung ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 04.12.2008
Autor: Sonata1991

Aufgabe
  Et: x1+(t-1)*x2+t*x3=6

Es gibt eine Gerade k, die in allen Ebenen Et liegt. Ermitteln sie eine Gleichung von k!

mh... aber diese Schnittgrade muss doch nicht zwangsläufig in allen Ebenen liegen, oder?

Bezug
                        
Bezug
Geradengleichung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Do 04.12.2008
Autor: leduart

Hallo
2 Ebenen mit t1 und t2 haben eine Gerade, die Schnittgerade gemeinsam. Wenn das nicht für alle möglichen t1 und t2 gilt, dann gäb es die Gerade nicht. Wenn also k existiert, dann muss für alle Schnittgeraden dasselbe rauskommen.
Gruss leduart

Bezug
        
Bezug
Geradengleichung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 04.12.2008
Autor: Lati

Hallo,

ich hätte auch noch eine andere Idee für dich. Du kannst dir ja mal folgendes überlegen: Zwei Koordinaten deiner Ebene Et bleiben ja immer fest, nämlich x1 und x3. Somit musst du dir jetzt nur noch überlegen wie denn die Ebenen nun liegen können. Dazu würde ich die jetzt einfach mal zeichnen. Dann siehst du dass alls Ebenen eine Gerade gemeinsam haben. Diese geht durch die Punkte (6/0/0) und (0/0/6). Jetzt dürfte die Gerade nicht mehr allzu schwer aufzustellen sein.

Viele Grüße L.

Bezug
                
Bezug
Geradengleichung ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Do 04.12.2008
Autor: Sonata1991

x3 bleibt aber nicht gleich... da steht ein t vor...

Bezug
                        
Bezug
Geradengleichung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 04.12.2008
Autor: Lati

Hallo,

sorry, dass hab ich im Eifer des Gefechts überlesen. Dann bleibt wirklich nur die Möglichkeit es über den Schnitt zu machen.Dann bekommst du ja schon die passende Gerade. Und wenn sie existiert muss das die gesuchte Gerade k sein.

Grüße

Bezug
        
Bezug
Geradengleichung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 05.12.2008
Autor: mathemak

Hallo!

> Et: x1+(t-1)*x2+t*x3=6
>  
> Es gibt eine Gerade k, die in allen Ebenen Et liegt.
> Ermitteln sie eine Gleichung von k!
>  Ich hatte mir überlegt, dass k denselben Stützvektor wie
> Et haben muss, also z.B.  [mm]\vektor{6\\ 0\\0}.[/mm] Als
> Richtungsvekrot hatte ich dann einen Punkt genommen, der in
> einer vorangehenden Aufgabe berechnet werden musste und den
> ich richtig hatte: [mm]\vektor{0\\ 0\\6/t}.[/mm] Mein Lehrer hat es
> mir als falsch angestrichen, also hat jemand vielleicht
> eine andere Idee?

Trenne "einfach" nach Termen mit und ohne $t$:

[mm] $E_t [/mm] : [mm] \; x_1 [/mm] - [mm] x_2 [/mm] - 6 + [mm] t\,(x_2 [/mm] + [mm] x_3) [/mm] = 0 $

Du erhälst zwei Ebenen:

[mm] $E_0: \; x_1 -x_2 [/mm] - 6 = 0 $

und

$L: [mm] x_2 [/mm] + [mm] x_3 [/mm] =0$.

Schneide diese beiden Ebenen und Du hast die Schnittgerade!

Überlege Dir aber, warum dies so ist!

Welche Bedeutung hat die Ebene $L$ für das Ebenenbüschel [mm] $E_t$? [/mm]

Gruß

mathemak



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de