www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geradenschar
Geradenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschar: windschief
Status: (Frage) beantwortet Status 
Datum: 17:42 So 01.03.2009
Autor: Mandy_90

Aufgabe
Gegeben ist die Geradenschar [mm] g_{a}:\vec{x}=\vektor{0 \\ 3-a \\ 2}+r*\vektor{1 \\ 1+a \\ 1-a}. [/mm]
Zeigen Sie,dass je zwei Geraden der Schar zueinander windschief sind.

Hallo^^

Ich hab grad noch eine Aufgabe zu windschiefen Geraden gemacht und würde gern wissen,ob die so richtig ist.

Zunächst muss ich nach Parallelität schauen:

[mm] \vektor{1 \\ 1+a_{1} \\ 1-a_{1}}=\lambda*\vektor{1 \\ 1+a_{2} \\ 1-a_{2}} [/mm]

Dann hab ich folgendes Gleichungsssystem:

1.) [mm] 1=\lambda [/mm]
2.) [mm] 1+a_{1}=\lambda+\lambda*a_{2} [/mm]
3.) [mm] 1-a_{1}=\lambda-\lambda*a_{2} [/mm]

Für dieses Gleichungssystem krieg ich als Lösung [mm] a_{1}=a_{2}. [/mm]
Kann ich jetzt sagen,dass zwei Geraden nicht parallel sind,weil man keine zwei verschiedenen Werte für a rausbekommt.Würde das als Begründung ausreichen?

Und dann muss ich die beiden auf Schnittpunkten überprüfen:

[mm] \vektor{0 \\ 3-a_{1} \\ 2}+r*\vektor{1 \\ 1+a_{1} \\ 1-a_{1}}=\vektor{0 \\ 3-a_{2} \\ 2}+s*\vektor{1 \\ 1+a_{2} \\ 1-a_{2}} [/mm]

Daraus ergibt sich folgendes System:

1.) r=s
2.) [mm] 3-a_{1}+r+r*a_{1}=3-a_{2}+s+s*a_{2} [/mm]
3.) [mm] 2+r-r*a_{1}=2+s-s*a_{2} [/mm]

Hier kommt dasselbe raus wie oben,nämlich [mm] a_{1}=a_{2}. [/mm]

Kann ich jetzt sagen,dass zwei Geraden zueinander windschief sind,weil es keine zwei verschiedene a gibt,für die die Geraden parallel sind oder sich schneiden?
Reicht das als Begründung aus?

Vielen Dank

lg

        
Bezug
Geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 01.03.2009
Autor: MathePower

Hallo Mandy_90,

> Gegeben ist die Geradenschar [mm]g_{a}:\vec{x}=\vektor{0 \\ 3-a \\ 2}+r*\vektor{1 \\ 1+a \\ 1-a}.[/mm]
>  
> Zeigen Sie,dass je zwei Geraden der Schar zueinander
> windschief sind.
>  Hallo^^
>  
> Ich hab grad noch eine Aufgabe zu windschiefen Geraden
> gemacht und würde gern wissen,ob die so richtig ist.
>  
> Zunächst muss ich nach Parallelität schauen:
>  
> [mm]\vektor{1 \\ 1+a_{1} \\ 1-a_{1}}=\lambda*\vektor{1 \\ 1+a_{2} \\ 1-a_{2}}[/mm]
>  
> Dann hab ich folgendes Gleichungsssystem:
>  
> 1.) [mm]1=\lambda[/mm]
> 2.) [mm]1+a_{1}=\lambda+\lambda*a_{2}[/mm]
>  3.) [mm]1-a_{1}=\lambda-\lambda*a_{2}[/mm]
>  
> Für dieses Gleichungssystem krieg ich als Lösung
> [mm]a_{1}=a_{2}.[/mm]
>  Kann ich jetzt sagen,dass zwei Geraden nicht parallel
> sind,weil man keine zwei verschiedenen Werte für a
> rausbekommt.Würde das als Begründung ausreichen?


Ja.


>  
> Und dann muss ich die beiden auf Schnittpunkten
> überprüfen:
>  
> [mm]\vektor{0 \\ 3-a_{1} \\ 2}+r*\vektor{1 \\ 1+a_{1} \\ 1-a_{1}}=\vektor{0 \\ 3-a_{2} \\ 2}+s*\vektor{1 \\ 1+a_{2} \\ 1-a_{2}}[/mm]
>  
> Daraus ergibt sich folgendes System:
>  
> 1.) r=s
>  2.) [mm]3-a_{1}+r+r*a_{1}=3-a_{2}+s+s*a_{2}[/mm]
>  3.) [mm]2+r-r*a_{1}=2+s-s*a_{2}[/mm]
>  
> Hier kommt dasselbe raus wie oben,nämlich [mm]a_{1}=a_{2}.[/mm]
>  
> Kann ich jetzt sagen,dass zwei Geraden zueinander
> windschief sind,weil es keine zwei verschiedene a gibt,für
> die die Geraden parallel sind oder sich schneiden?
>  Reicht das als Begründung aus?


Klar, reicht das aus. [ok]


>  
> Vielen Dank
>  
> lg


Gruß
MathePower

Bezug
                
Bezug
Geradenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 So 01.03.2009
Autor: Mandy_90

ok gut,vielen dank =)

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de