www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geradenschar
Geradenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschar: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:21 Fr 30.08.2013
Autor: Muting

Aufgabe
Kletterturm:
Ein Kletterturm ist in der Form eines Pyramidenstumpfes geplant. Hierbei bilden die Punkte
A(0|0|0), B(4|6|0), C(0|12|0), D(-8|0|0) das Grundflächenviereck, während
E(2|0|12), F(4|3|12), G(2|6|12), H(-2|0|12) das Deckenflächenviereck bilden.

c) Zeigen Sie: Die Geradenschar durch S in Richtung
(-2-2a )
( 3a   )
( 12   )
enthält die Geraden durch die Kanten BF und CG.                                        

d) Begründen Sie, dass die Richtungsvektoren der Schar aus Aufgabe c komplanar sind.

Hallo erstmal,
bei dieser Aufgabe bin ich stehen geblieben und ich denke, warum ich nicht weiter komme, liegt erstens schon einmal an der Aufgabenstellung von f.) .
Soll ich zeigen, dass die geraden durch BF und CG die Geradenschar schneiden? Dann müsste ich ja ausschließlich die Geradengleichungen der schar mit den Geradengleichungen von BF und CG gleichsetzen und umstellen bzw. das gleichungssystem lösen, doch beim gleichungssystem komme ich nicht richtig auf einen wert für die variablen r,u,au.
x.schar=x.BF
(4)   (-2-2a) (4)  (0)
(0)+u*(3a)   =(6)+r(-3)
(24)   (12)   (0)  (12)
die geradengleichung für BF müsste stimmen B(4|6|0),
F(4|3|12).
mit dem Lösungsverfahren nach Gauß bekomme ich dann im letzten schritt:
r u au
0 0 0  0 wäre ja eine wahre aussage jedoch bringt dies mich bei der aufgabe nicht weiter
vllt kann mir ja einer die Aufgabenstellung noch einmal näherer erläutern und meinen Ansatz beurteilen.
Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Geradenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Fr 30.08.2013
Autor: reverend

Hallo Muting, [willkommenmr]

Was ist S? Die imaginäre Spitze der Pyramide, aus der der Stumpf hervorgegangen ist?

Übrigens schreibt man hier sowas wie [mm] \vec{v}=\vektor{a\\b\\c} [/mm] so:
\vec{v}=\vektor{a\\b\\c}

Dann muss man sich nicht soviel Mühe beim Platzieren der einzelnen Zeilen geben, und das Ergebnis ist einfach besser lesbar.

Grüße
reverend

Bezug
        
Bezug
Geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Fr 30.08.2013
Autor: leduart

Hallo
die Geraden durch BF und CG sollen nicht die Geradenschar durch S schneiden, sondern sie sollen Geraden dieser Schar sein.
wie die Geradenschar aussieht kann man deinem post nicht entnehmen, was soll etwa Richtung ( 3a) oder  (12) bedeuten, und was ist S.
nach deinen Gleichungen nehm ich am S=(4,0,24) und die Richtung ist [mm] \vektor{-2-2a//3a//12}? [/mm]
dass du das GS richtig erfüllen kannst heißt, die Gerade durch BF gehört zu der Schar. besser hättest du  hingeschrieben für welches a der Schar du BF bekommst.
Gruss leduart

Bezug
                
Bezug
Geradenschar: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 30.08.2013
Autor: Muting

Aufgabe
Aufgabe
Kletterturm:
Ein Kletterturm ist in der Form eines Pyramidenstumpfes geplant. Hierbei bilden die Punkte
A(0|0|0), B(4|6|0), C(0|12|0), D(-8|0|0) das Grundflächenviereck, während
E(2|0|12), F(4|3|12), G(2|6|12), H(-2|0|12) das Deckenflächenviereck bilden.

c) Zeigen Sie: Die Geradenschar durch S in Richtung
(-2-2a )
( 3a   )
( 12   )
enthält die Geraden durch die Kanten BF und CG.                                        

d) Begründen Sie, dass die Richtungsvektoren der Schar aus Aufgabe c komplanar sind.

Danke für deine Antwort, jedoch ist mir unklar wie ich nun a genau berechne. Mit meinem GS komme ich ja nicht auf a. Ich beweise ja nur, dass die Gerade durch BF eine Gerade der Geradenschar ist.
Man könnte ja a theoretisch einfach ablesen jedoch wäre dies nicht der sinn der Aufgabe.
Welchen Ansatz müsste man nehmen, um a zu erhalten?
Richtung vec(-2-2a//3a//12) S(4/0/24)
B(4/6/0) F(4/3/12)

Bezug
                        
Bezug
Geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Fr 30.08.2013
Autor: Diophant

Hallo,

> Aufgabe
> Kletterturm:
> Ein Kletterturm ist in der Form eines Pyramidenstumpfes
> geplant. Hierbei bilden die Punkte
> A(0|0|0), B(4|6|0), C(0|12|0), D(-8|0|0) das
> Grundflächenviereck, während
> E(2|0|12), F(4|3|12), G(2|6|12), H(-2|0|12) das
> Deckenflächenviereck bilden.

>

> c) Zeigen Sie: Die Geradenschar durch S in Richtung
> (-2-2a )
> ( 3a )
> ( 12 )
> enthält die Geraden durch die Kanten BF und CG.

>
>

> d) Begründen Sie, dass die Richtungsvektoren der Schar aus
> Aufgabe c komplanar sind.
> Danke für deine Antwort, jedoch ist mir unklar wie ich
> nun a genau berechne. Mit meinem GS komme ich ja nicht auf
> a. Ich beweise ja nur, dass die Gerade durch BF eine Gerade
> der Geradenschar ist.
> Man könnte ja a theoretisch einfach ablesen jedoch wäre
> dies nicht der sinn der Aufgabe.

Und weshalb denn nicht? Man muss doch nicht immer alles mit Gewalt ausrechnen, manchmal hilft ja schon eine clevere Überlegung. :-)

> Welchen Ansatz müsste man nehmen, um a zu erhalten?
> Richtung vec(-2-2a//3a//12) S(4/0/24)
> B(4/6/0) F(4/3/12)

Die Geradenschar sieht vernünftig aufgeschrieben so aus:

[mm] \vec{x}=\vektor{4\\0\\24}+\lambda*\vektor{-2-2a\\3a\\12} [/mm]

(du musst vor LaTeX-Befehle stets einen Backslash setzen).

Die Gerade durch B und F ist*

[mm] \vec{x}=\vektor{4\\0\\24}+k*\vektor{0\\-1\\4} [/mm]

und man sieht leicht ein, dass für a=-1 ein vielfaches von

[mm] \vektor{0\\-1\\4} [/mm]

herauskommt, so dass hier also für a=-1 die Behauptung stimmt. Das musst du jetzt für die drei anderen Seitenkanten sinngemäß ebenso machen.

*Wir gehen hier ja stillschweigend davon aus, dass es den Punkt S überhaupt gibt (weshalb darf man das?) und das seine Koordinaten stimmen (das tun sie).


Gruß, Diophant 
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de