www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Gewinnwahrscheinlichkeit
Gewinnwahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnwahrscheinlichkeit: Eine Aufgabe zur Gew.wahrsch.
Status: (Frage) beantwortet Status 
Datum: 16:32 Fr 05.12.2014
Autor: Grundkurshaber

Aufgabe
Dieter Bohlen und Thomas Anders drehen je ein in 10 gleichgroße, aber unterschiedlich beschriftete Sektoren unterteiltes Rad einmal pro Spiel.
Beim Rad ,,Dieter Bohlen'' lauten die Sektoren: 1-5-6-1-2-2-1-2-1-5
Beim Rad ,,Thomas Anders''                             1-6-6-1-1-6-1-1-6-1

Zeigen Sie damit, dass der Poptitan und der Kalamaris-auf-Ibiza-Fresser die gleiche Gewinnwahrscheinlichkeit haben und zeigen sie damit, ob das Spiel fair oder nicht fair ist.


Guten Tag.

Kurz vor Weihnachten versucht mein Tutor mir noch ein bisschen Stochastik in die Knie zu blasen. Mein Ansatz wäre:

Fair ist ein Spiel ja nur, wenn beide Teilnehmer die gleiche Gewinnwahrscheinlichkeit haben.

Da es ja vom Zufall abhängt wie viel jeder erhält, gilt es doch den Durchschnittl. Auszahlungswert (=Erwartungswert) zu berechnen.

Für Thomas Anders würde es folgende Gewinnwahrscheinlichkeiten geben:

[mm] x_{i}: [/mm]              -5€                                -4€                     -1€                        
[mm] p(x=x_{i} \bruch{3}{50} \bruch{3}{25} \bruch{9}{50} [/mm]  

         0€                  1€                     4€                           5€
[mm] \bruch{7}{25} \bruch{2}{25} \bruch{3}{25} \bruch{4}{25} [/mm]


Dann müsste man die [mm] x_{i}'s [/mm] mit den [mm] p(x=x_{i}'s [/mm] multiplizieren und die Ergebnisse addieren, also [mm] \bruch{3}{50}*(-5)€ [/mm] + [mm] \bruch{3}{25} *(-4€).............+\bruch{4}{25}*5€ [/mm]

Als Erwartungswert E (X) erhält man für Thomas = 0,4  

Gibt man sich dasselbe Spielchen nochmal für Dieter, erhalte ich  E (X) = -0,4

Da die Erwartungswerte in den Verhältnissen 0,4 = -0,4 stehen, hat Dieter quasi keine Chance und das Spiel ist unfair.

Mein Tutor meint aber, ich hätte mit dieser Rechnung nur gezeigt ob das Spiel fair ist oder nicht, die ,,Gewinnwahrscheinlichkeit'' fehlt.

Meine Frage daher: Was ist hier mit Gewinnwahrscheinlichkeit gemeint?. Und wie soll ich zeigen, dass beide ,,die gleiche Gewinnwahrscheinlichkeit'' haben, wenn ich doch bewiesen habe, dass Thomas Dieter schamlos abzockt?

Ich würde mich freuen, wenn jemand von Ihnen Licht ins Dunkle bringen würde.

In diesem Sinne,

Grundkurshaber


        
Bezug
Gewinnwahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Fr 05.12.2014
Autor: hanspeter.schmid

Das Spiel ist noch nicht vollständig beschrieben. Was geschieht denn genau, wenn eine bestimmte Zahl erscheint?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de