www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Givens-Rotationen
Givens-Rotationen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Givens-Rotationen: Koeffizienten c und s
Status: (Frage) beantwortet Status 
Datum: 21:20 So 05.04.2009
Autor: Pacapear

Hallo zusammen!

Ich hab mal wieder eine Frage zu diesen blöden Givensrotationen...

Und zwar zu den Koeffizienten s und c:

Ich hab hier eine Herleitung, und am Ende bekomme ich raus, dass [mm] c=\bruch{x_i}{r} [/mm] und [mm] s=\bruch{x_j}{r} [/mm] mit [mm] r=\pm\wurzel{x_i^2+x_j^2}. [/mm]

Welcher dieser Faktoren bekommt das Minuszeichen vor der Wurzel zugewiesen?

Bei den Übungen bei uns an der Uni haben wir dieses Minuszeichen übrigens komplett weggelassen [nixweiss]

LG, Nadine

        
Bezug
Givens-Rotationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mo 06.04.2009
Autor: fred97


> Hallo zusammen!
>  
> Ich hab mal wieder eine Frage zu diesen blöden
> Givensrotationen...
>  
> Und zwar zu den Koeffizienten s und c:
>  
> Ich hab hier eine Herleitung, und am Ende bekomme ich raus,
> dass [mm]c=\bruch{x_i}{r}[/mm] und [mm]s=\bruch{x_j}{r}[/mm] mit
> [mm]r=\pm\wurzel{x_i^2+x_j^2}.[/mm]
>  
> Welcher dieser Faktoren bekommt das Minuszeichen vor der
> Wurzel zugewiesen?
>  
> Bei den Übungen bei uns an der Uni haben wir dieses
> Minuszeichen übrigens komplett weggelassen [nixweiss]


So muß das ja auch sein !  Welche Bedeutung hat denn $ [mm] r=\wurzel{x_i^2+x_j^2}. [/mm] $  ????


FRED


>  
> LG, Nadine


Bezug
                
Bezug
Givens-Rotationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 06.04.2009
Autor: Pacapear

Hallo Fred!



> So muß das ja auch sein !  Welche Bedeutung hat denn
> [mm]r=\wurzel{x_i^2+x_j^2}.[/mm]  ????

Ähm,, ich weiß grad nicht so genau [haee]

Eine Wurzel ist ja eigentlich eindeutig bestimmt, und ihr Ergebnis ist immer größer 0, oder?

Wenn's danach ginge, ist klar, dass der Minus-Term wegfällt.

Aber irgendwie bin ich mir da nicht so ganz sicher, dass ist mein allgemeines Problem, was ich so mit Wurzeln habe, dass ich nicht weiß, wann ich nur das positive Ergebnis, und wann ich sowohl das Positive als auch das Negative nehme.

LG, Nadine

Bezug
                        
Bezug
Givens-Rotationen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 06.04.2009
Autor: fencheltee

das minus fällt weg, weil mit r eine >Länge< gemeint ist, und diese werden als immer >=0 angenommen ;)

Bezug
                                
Bezug
Givens-Rotationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:54 Mo 06.04.2009
Autor: Pacapear


> das minus fällt weg, weil mit r eine >Länge< gemeint ist,
> und diese werden als immer >=0 angenommen ;)

Achso, weil [mm] \vektor{r \\ 0} [/mm] ein Vielfaches des ersten Einheitsvektors ist, auf den ich (für n=2) die erste Spalte der Matrix abbilden will?

Aber wie ist das dann, wenn die Spalte von A mehr als zwei Einträge hat? Dann steht ja in einer Zeile r, in einer 0, und die anderen Einträge bleiben ja erhalten. Dann ist es ja eigentlich kein Vielfaches eines Einheitsvektors mehr, oder? Aber das ist genau das, was ich laut Buch mache soll, auf ein Vielfaches eines Einheitsvektors abbilden [haee]

LG, Nadine

Bezug
                                        
Bezug
Givens-Rotationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 22.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de