www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Gleichmäßige Konvergenz Reihe
Gleichmäßige Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mi 09.03.2011
Autor: Loriot95

Aufgabe
Bekanntlich konvergiert die Exponentialreihe überall. Beweisen Sie, dass es sich aber nicht um eine gleichmäßig konvergente Reihe handelt.

Guten Tag,

also mir ist wie schon oben erwähnt bekannt, das die Exponentialreihe gegen die Exponentialfunktion konvergiert.
Was mich nun verwirrt ist, wir haben bis jetzt immer Funktionenfolgen betrachtet und an diesen die gleichmäßige Konvergenz gezeigt. Nun hier haben wir eine Reihe, keine Funktionenfolge. Wie geht man in diesem Fall vor?

LG Loriot95

        
Bezug
Gleichmäßige Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Mi 09.03.2011
Autor: fred97

Die n-te Partialsumme der Exponentialreihe ist

[mm] $f_n(x)=\summe_{k=0}^{n}\bruch{x^k}{k!}$ [/mm]

Zeigen sollst Du: die Folge [mm] (f_n) [/mm] ist auf [mm] \IR [/mm] nicht gleichmäßig konvergent.

FRED

Bezug
                
Bezug
Gleichmäßige Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 09.03.2011
Autor: Loriot95

Also ist zu zeigen : [mm] \exists \varepsilon [/mm] >0 [mm] \forall n_{0} \in \IN \exists [/mm] n [mm] \ge n_{0}, [/mm] x [mm] \in \IR: [/mm] | [mm] \summe_{k=0}^{n} \bruch{x^{k}}{k!} [/mm] - [mm] \summe_{k=0}^{\infty} \bruch{x^{k}}{k!} [/mm] | [mm] \ge \varepsilon [/mm]

So korrekt?

Bezug
                        
Bezug
Gleichmäßige Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 09.03.2011
Autor: Gonozal_IX

Huhu,

> Also ist zu zeigen : [mm]\exists \varepsilon[/mm] >0 [mm]\forall n_{0} \in \IN \exists[/mm]
> n [mm]\ge n_{0},[/mm] x [mm]\in \IR:[/mm] | [mm]\summe_{k=0}^{n} \bruch{x^{k}}{k!}[/mm]
> - [mm]\summe_{k=0}^{\infty} \bruch{x^{k}}{k!}[/mm] | [mm]\ge \varepsilon[/mm]
>  
> So korrekt?

jo, auch wenn ich nen Quantor mehr vors x machen würde.
Aber schwer ist das auch nicht zu zeigen, wenn du dir überlegst, dass für nichtnegative x gilt:

[mm] $\left|\summe_{k=0}^{n} \bruch{x^{k}}{k!} - \summe_{k=0}^{\infty} \bruch{x^{k}}{k!}\right| [/mm] =  [mm] \summe_{k=n+1}^{\infty} \bruch{x^{k}}{k!} \ge \bruch{x^{n+1}}{(n+1)!}$ [/mm]

MFG,
Gono.


Bezug
                                
Bezug
Gleichmäßige Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Do 10.03.2011
Autor: Loriot95

Vielen Dank für deine Antwort. Wie ist das nun... kann ich z.B als x = (n+1)! wählen und [mm] \varepsilon [/mm] = [mm] \bruch{1}{10}. [/mm] Dann wäre [mm] ((n+1)!)^{n+1} \ge \bruch{(n+1)!}{10} [/mm] was ja offensichtlich stimmt. Wäre damit der Beweis schon komplett?

LG Loriot95

Bezug
                                        
Bezug
Gleichmäßige Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Do 10.03.2011
Autor: kamaleonti

Hallo,
> Vielen Dank für deine Antwort. Wie ist das nun... kann ich
> z.B als x = (n+1)! wählen und [mm]\varepsilon[/mm] = [mm]\bruch{1}{10}.[/mm]
> Dann wäre [mm]((n+1)!)^{n+1} \ge \bruch{(n+1)!}{10}[/mm] was ja
> offensichtlich stimmt. Wäre damit der Beweis schon
> komplett?

Das x sollte nicht am Anfang in Abhängigkeit von n gewählt werden.
So wird m.E. nicht richtig klar, dass es für das gewählte [mm] \varepsilon>0 [/mm] für alle [mm] n_0\in\IN [/mm] ein [mm] n\geq n_0 [/mm] gibt mit [mm] $\left|\summe_{k=0}^{n} \bruch{x^{k}}{k!}- \summe_{k=0}^{\infty} \bruch{x^{k}}{k!}\right| \ge \varepsilon [/mm] $ für ein [mm] x\in\IR [/mm]

Hier ist eine Variante:
Sei [mm] \varepsilon=1. [/mm]
Angenommen es gibt ein [mm] n_0 [/mm] mit [mm] $\left|\summe_{k=0}^{n} \bruch{x^{k}}{k!}- \summe_{k=0}^{\infty} \bruch{x^{k}}{k!}\right| [/mm] <1$ für [mm] n\geq n_0 [/mm] und alle [mm] x\in\IR. [/mm]
Nun setze [mm] x:=n_0+1 [/mm] und [mm] n:=n_0 [/mm]
Dann ist offensichtlich [mm] $\left|\summe_{k=0}^{n} \bruch{x^{k}}{k!}- \summe_{k=0}^{\infty} \bruch{x^{k}}{k!}\right|=\summe_{k=n+1}^{\infty} \bruch{x^{k}}{k!}\geq\bruch{x^{n+1}}{(n+1)!}\geq1, [/mm] Widerspruch

>  
> LG Loriot95

Gruß


Bezug
                                                
Bezug
Gleichmäßige Konvergenz Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Do 10.03.2011
Autor: Loriot95

Ok. Danke für eure Hilfe. Ich denke ich habe es nun verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de