www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Gleichmäßige Stetigkeit,
Gleichmäßige Stetigkeit, < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit,: "Korrektur"
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 24.06.2014
Autor: Qight

Aufgabe
Zeigen Sie, dass die Funktion [mm]f : [0,\infty) \to \IR, x \to \wurzel{x} [/mm] gleichmäßig stetig, aber nicht Lipschitz-beschränkt ist.

So, ich denke dass ich die Aufgabe gelöst habe, hoffe nur auf Fehlerkorrektur und Verbesserungsvorschläge, was mathematische Begründungen angeht.

Sei [mm] f : [0,\infty) [/mm] mit [mm] [0,\infty) \subset \IR [/mm]

Nebenrechnung:

[mm] |\wurzel{x} - \wurzel{y} | \le \wurzel {|x - y| } [/mm], sei [mm] x \ge y [/mm]
[mm] \wurzel{x} - \wurzel{y} \le \wurzel{x - y} [/mm]
[mm] x - 2\wurzel{xy} + y \le x-y [/mm]
[mm] -2\wurzel{xy} \le -2y [/mm]
[mm] y \le \wurzel{xy} [/mm]

Da [mm] x \ge y [/mm] folgt, [mm] \wurzel{xy} \ge \wurzel{yy} = y [/mm], also gilt diese Ungleichung. Da mann in der Betragsgleichung die Bedingung auch für den umgekehrten Fall wählen kann trifft dass also auch für [mm] y \ge x [/mm] zu.


Sei [mm]\epsilon > 0[/mm] mit [mm]x, x_0 \in [0,\infty)[/mm], so gibt es ein [mm] \delta [/mm] für dass gilt:
[mm]|x - x_0| < \delta [/mm]
[mm]|\wurzel{x} - \wurzel{x_0} | \le \wurzel{|x - y|} < \wurzel{\delta} = \epsilon[/mm]
Mit [mm] \delta := \epsilon^{2} [/mm]
Also ist [mm] f : [0,\infty) \to \IR, x \to \wurzel{x} [/mm] gleichmäßig stetig.

Lipschitz-beschränkt:
Wir nehmen an, dass Lipschitz-beschränkt gilt, also:
[mm] |f(x) - f(0)| \le L*|x - 0| [/mm]
[mm] |\wurzel{x} - \wurzel{0}| \le L*|x| [/mm]
[mm] \wurzel{x} \le L*|x| [/mm]
[mm] \bruch{\wurzel{x}}{x} \le L[/mm]
[mm] \bruch{1}{\wurzel{x}} \le L [/mm]

Da [mm] \limes_{x\rightarrow 0} \bruch{1}{\wurzel{x}} = \infty [/mm] gegen 0 keine reale (oder besser reele?) Zahl annimmt, findet man eine immer kleiner Zahl, so dass L ebenfalls keine reale Zahl ist.
Also ist [mm] f : [0,\infty) \to \IR, x \to \wurzel{x} [/mm] nicht Lipschitz-beschränkt.

Denke das es alles richtig ist, hoffe nur, dass auch die mathematisch Begründung soweit okay ist.

        
Bezug
Gleichmäßige Stetigkeit,: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Mi 25.06.2014
Autor: schachuzipus

Hallo,

> Da [mm]\limes_{x\rightarrow 0} \bruch{1}{\wurzel{x}} = \infty[/mm]
> gegen 0 keine reale (oder besser reele?) Zahl annimmt,


Noch viel viel besser: reelle Zahl

Gruß

schachuzipus

Bezug
        
Bezug
Gleichmäßige Stetigkeit,: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Mi 25.06.2014
Autor: Gonozal_IX

Hiho,

> Nebenrechnung:
>  
> [mm]|\wurzel{x} - \wurzel{y} | \le \wurzel {|x - y| } [/mm], sei [mm]x \ge y[/mm]
>  
> [mm]\wurzel{x} - \wurzel{y} \le \wurzel{x - y}[/mm]
>  [mm]x - 2\wurzel{xy} + y \le x-y[/mm]
>  
> [mm]-2\wurzel{xy} \le -2y[/mm]
>  [mm]y \le \wurzel{xy}[/mm]

Du schreibst hier Terme untereinander. In welchem Zusammenhang sollen die stehen? Das ist gar nicht klar und bedarf einiger Überlegungen bzw Begründungen, die du mal mit angeben solltest!
Sonst schreib ich sowas wie:

1=3
x=y

Wie hängen die nun zusammen?

> Mit [mm]\delta := \epsilon^{2}[/mm]
>  Also ist [mm]f : [0,\infty) \to \IR, x \to \wurzel{x}[/mm] gleichmäßig stetig.

[ok]

Dein Beweis zur Lipschitzstetigkeit ist auch ok. Ein anderer Weg: Welchen Zusammenhang kennst du zwischen Ableitung und Lipschitz-Stetigkeit?

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de