www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 19.01.2006
Autor: Micchecker

Hi!

Ich muss folgende Funktionen auf gleichmäßige Stetigkeit hin untersuchen:

h: IR \ {0} ---> IR
x ---> [mm] 1/(x^2) [/mm]

g: IR ---> IR
x ---> |x|

f: IR ---> IR
x ---> [mm] x^7 [/mm]


Wie mache ich das am Besten?

Gruß

        
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 19.01.2006
Autor: Julius

Hallo!

Alle diese Aufgaben wurden vor wenigen Tagen/Stunden hier im Matheraum gelöst. Such mal ein bisschen...

Ansonsten sind eigene Ansätze vonnöten, und ich bitte dich beim nächsten Mal nicht so viele Aufgaben in den gleichen Strang zu stellen, sondern lieber alle einzeln. Dann bekommst du auch eher eine Antwort.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Sorry + Bitte an Moderatoren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Do 19.01.2006
Autor: Julius

Hallo!

Ich sehe gerade, dass die Aufgaben, die gelöst wurden, doch ein wenig differierten (auch wenn sie doch sehr ähnlich sind). Daher wäre es nett, wenn ein Moderator den Status der Frage wieder auf "unbeantwortet" stellt. Danke! Meine Bitte bezüglich der Masse an Aufgaben und den eigenen Ansätzen gilt trotzdem für die Zukunft.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 19.01.2006
Autor: mathiash

Hallo Jonas,

am besten schreibst Du Dir die Definition von glm. Stetigkeit nochmal hin:

[mm] f\colon D\to \IR [/mm] glm. stetig auf D gdw es zu jedem [mm] \epsilon [/mm] >0 ein [mm] \delta> [/mm] 0 gibt, so dass
fuer alle   [mm] x,y\in [/mm] D    mit    [mm] |x-y|\leq \delta [/mm]      dann auch        [mm] |f(x)-f(y)|\leq\epsilon [/mm]       gilt.

Schauen wir uns exemplarisch die erste Fkt   [mm] x\mapsto \frac{1}{x^2} [/mm] auf [mm] D=\IR\setminus\{0\} [/mm]
an: Angenommen, sie waere glm. stetig. Setzen wir [mm] y=x+\delta [/mm] und schauen wir, was
bei [mm] x\to [/mm] 0 geschieht:

[mm] |f(x)-f(x+\delta)| [/mm] = [mm] \left | \frac{(x+\delta)^2-x^2}{x^2\cdot (x+\delta)^2} \right [/mm] |

= [mm] \left | \frac{2x\cdot \delta -\delta^2}{x^2(x+\delta)^2}\right [/mm] |

= [mm] \left | \frac{\delta (2-\delta)}{x\cdot (x+\delta)^2}\right [/mm] | und das divergiert offenbar fuer
jedes [mm] \delta [/mm] > 0  bei [mm] x\to [/mm] 0 gegen [mm] \infty. [/mm]

Kann also dann die Funktion glm. stetig sein ?

Viele Gruesse,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de