www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Gleichung
Gleichung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 17:05 Do 25.11.2004
Autor: silberstern

Hallo,
könnte mir vielleicht jemand helfen
diese Gleichung y=ax²+bx+c  in diese Gleichung y=a(x-xs)²+ys umzuwandeln??hab da nämlich echt keinen Plan von und dummerweise kommt dies Morgen in meiner Klausur vor.


Danke Silberstern


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gleichung: 2 Wege
Status: (Antwort) fertig Status 
Datum: 17:56 Do 25.11.2004
Autor: Loddar

Hallo Silberstern,

[willkommenmr] !!!

Um Deine Aufgabe zu lösen gibt es 2 Wege.
Und zwar kann man aus $y = [mm] ax^2+bx+c$ [/mm] umformen in $y = [mm] a(x-x_s)^2+y_s$, [/mm] oder halt umgekehrt.

Schließlich hast Du ja das Ergebnis bereits gegeben.

Einfacher ist auf jeden Fall der Weg rückwärts:
Du multiplizierst Deine Klammer aus und fasst anschließend zusammen.

Dann kannst Du über einen sogenannten "Koeffizientenvergleich" die Werte für a, b und c bzw. [mm] $x_s$ [/mm] und [mm] $y_s$ [/mm] bestimmen.



Für den Weg vorwärts müsstest Du mit sogenannter "quadratischer Ergänzung" arbeiten, um den gegebenen Ausdruck $y = [mm] ax^2+bx+c$ [/mm] über eine binomische Formel in das gewünschte Ergebnis umzuwandeln.

Ich hoffe, das klingt jetzt nicht zu kompliziert ...
Sonst: frag noch mal nach.


Grüße Loddar


Bezug
                
Bezug
Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 25.11.2004
Autor: silberstern

Ok, erstmal vielen Dank.
Ich habe mich für die leichtere Variante endschieden, habe auch die Klammer ausmultipliziert, aber bei dem Koeffizientenvergleich komme ich nicht weiter. Könnte mir da evtl. nocheinmal geholfen werden???


Danke nochmal , Silberstern

Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Do 25.11.2004
Autor: Loddar

Klar doch ...

Also:
$y = a [mm] (x-x_s)^2 [/mm] + [mm] y_s$ [/mm]
$y = a [mm] (x^2 [/mm] - [mm] 2*x*x_s [/mm] + [mm] x_s^2) [/mm] + [mm] y_s$ [/mm]
$y = [mm] ax^2 [/mm] - [mm] 2*a*x_s*x [/mm] + [mm] a*x_s^2 [/mm] + [mm] y_s$ [/mm]

Dem steht nun gegenüber:
$y = [mm] ax^2 [/mm] + bx + c$

Koeffizientenvergleich bedeutet:
Der Wert vor dem [mm] $x^2$ [/mm] in der oberen Gleichung muss nun gleich dem Wert vor dem [mm] $x^2$ [/mm] in der unteren Gleichung sein:
$a = a$ (1)
Irgendwie schon klar, oder?

Die Werte vor dem x:
$b = [mm] 2*a*x_s$ [/mm] (2)

Und letztlich:
$c = [mm] a*x_s^2 [/mm] + [mm] y_s$ [/mm] (3)

Aus der Gleichung (2) kannst Du nun [mm] $x_s$ [/mm] in Abhängigkeit von a und b ermitteln.
Das setzt Du nun in Gleichung (3) ein und kannst nach [mm] $y_s$ [/mm] umstellen.

Damit erhältst Du nun die Werte für [mm] $x_s$ [/mm] bzw. [mm] $y_s$ [/mm] als allgemeine Formeln, wie sie aus a, b bzw. c zu berechnen sind.

Nun klarer?

Grüße Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de