www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung: Definitionsbereich
Gleichung: Definitionsbereich < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 12.08.2010
Autor: begker

Aufgabe
Geben Sie den Definitionsbereich und die Lösungsmenge der folgenden Gleichung an:
(x-2):(x²-4)=0

Als Lösung kommt prinzipiell ja x=2 in Frage. Dann ist die Gleichung aufgrund des Teilens durch Null allerdings nicht lösbar. Also müsste doch die Lösungsmenge leer sein, oder?
Und was soll denn bei einer Gleichung der Definitionsbereich sein? Der Def.bereich ist doch eigentlich die Menge der einsetzbaren Definitionswerte einer Funktion. Bei einer Gleichung spricht man doch eigentlich nur von Lösungsmengen, oder?
Ich danke euch,
beste Grüße,
begker

        
Bezug
Gleichung: Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 12.08.2010
Autor: schachuzipus

Hallo bekger,

> Geben Sie den Definitionsbereich und die Lösungsmenge der
> folgenden Gleichung an:
> (x-2):(x²-4)=0
>  Als Lösung kommt prinzipiell ja x=2 in Frage. Dann ist
> die Gleichung aufgrund des Teilens durch Null allerdings
> nicht lösbar. Also müsste doch die Lösungsmenge leer
> sein, oder? [ok]

ganz genau!

> Und was soll denn bei einer Gleichung der
> Definitionsbereich sein? Der Def.bereich ist doch
> eigentlich die Menge der einsetzbaren Definitionswerte
> einer Funktion. [ok] Bei einer Gleichung spricht man doch
> eigentlich nur von Lösungsmengen, oder?

Naja, die Lösungsmenge ist halt die Menge derjenigen [mm] $x\in\IR$, [/mm] welche bei Einsetzen in die Gleichung zu einer wahren Aussage führen.

Der Definitionsbereich ist die Menge aller [mm] $x\in\IR$, [/mm] für die die Gleichung überhaupt definiert ist.

Hier hast du linkerhand einen Bruch [mm] $\frac{x-2}{x^2-4}$ [/mm]

Ein Bruch ist nur definiert, falls der Nenner [mm] $\neq [/mm] 0$ ist.

Also [mm] $x^2-4=0\gdw [/mm] x=2 \ [mm] \text{oder} [/mm] \ x=-2$

Dh. für [mm] $x=\pm [/mm] 2$ hast du überhaupt keinen wohldefinierten Ausdruck da stehen, denn du würdest durch 0 teilen.

Also ist der Definitionsbereich [mm] $\IR\setminus\{-2,2\}$ [/mm]

Du darfst also alle reellen Zahlen [mm] $\neq\pm [/mm] 2$ einsetzen.

Damit kannst du dich daran machen, die Gleichung zu lösen.

Also einzige Lösung kommt infrage: $x=2$

Das liegt aber nicht im Definitionsbereich, daher liegst du mit deiner Vermutung oben richtig und die Lösungsmenge ist die leere Menge [mm] $\emptyset$ [/mm]

>  Ich danke euch,
> beste Grüße,
>  begker

Gruß

schachuzipus


Bezug
        
Bezug
Gleichung: Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 12.08.2010
Autor: gfm


> Geben Sie den Definitionsbereich und die Lösungsmenge der
> folgenden Gleichung an:
> (x-2):(x²-4)=0
>  Als Lösung kommt prinzipiell ja x=2 in Frage. Dann ist
> die Gleichung aufgrund des Teilens durch Null allerdings
> nicht lösbar. Also müsste doch die Lösungsmenge leer
> sein, oder?
> Und was soll denn bei einer Gleichung der
> Definitionsbereich sein? Der Def.bereich ist doch
> eigentlich die Menge der einsetzbaren Definitionswerte
> einer Funktion. Bei einer Gleichung spricht man doch
> eigentlich nur von Lösungsmengen, oder?
>  Ich danke euch,
> beste Grüße,
>  begker

Es handelt sich beim Lösen einer Gleichung wie z.B. f(x)=g(x), um die explizite Angabe der Menge [mm] L=\{x:f(x)=g(x)\}. [/mm] Damit das wohldefiniert ist, muss man noch angeben in welcher Obermenge, die Elemente zu suchen sind und da bietet sich natürlich der Definitionsbereich der vorkommenden Funktionsterme an:

[mm] L=\{x\in D_f\cap D_g:f(x)=g(x)\}. [/mm]

LG

gfm





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de