www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung d. Mittelsenkrechten
Gleichung d. Mittelsenkrechten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung d. Mittelsenkrechten: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 09:11 Fr 07.06.2013
Autor: hartlaubd

Aufgabe
Geben Sie die Gleichungen der Mittelsenkrechten des Dreiecks an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo Forum!

Irgendwie stehe ich auf dem Schlauch…
Ich komme bei der o. g. Aufgabe nicht weiter:

Meine bekannten Koordinaten sind:

A (-1|-2), B (4|-1), C (1,5|3)

Und die der von mir errechneten Seitenmittelpunkte dann:

AB (1,5|-1,5)
BC (2,75|1)
AC (0,25|0,5)

So, dann würde ich durch die Zwei-Punkte-Form die Gleichung lösen.

Mein Ergebnis

zu Seitenhalbierenden s1 von A zu BC

f(s1)= (1-(-2))/(2,75-(-1))×(x-1)+(-2)

f(s1)=0,8x-1,2

Zu Seitenhalbierenden s2 von B zu AC

f(s1)= (0,5-(-1))/(0,25-4)×(x-4)+(-1)

f(s1)=-0,4x+2,6

Ich denke mal, die s1 und s2 sollten stimmen (oder?).

Jetzt das Problem:

Zu Seitenhalbierenden s3 von C zu AB

f(s1)= (-1,5-3)/(1,5-1,5)×(x-1,5)+3)


Da kann doch etwas nicht stimmen…

Würde ja den Bruch (-4,5)/0 erhalten.

Irgendwie glaube ich, ich habe da etwas falsch gemacht und wäre über jeden Tipp, jede Korrektur und Gedankenansatz dankbar.








        
Bezug
Gleichung d. Mittelsenkrechten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Fr 07.06.2013
Autor: Diophant

Hallo und

[willkommenmr]

> Geben Sie die Gleichungen der Mittelsenkrechten des
> Dreiecks an.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>
>

> Hallo Forum!

>

> Irgendwie stehe ich auf dem Schlauch…
> Ich komme bei der o. g. Aufgabe nicht weiter:

>

> Meine bekannten Koordinaten sind:

>

> A (-1|-2), B (4|-1), C (1,5|3)

>

> Und die der von mir errechneten Seitenmittelpunkte dann:

>

> AB (1,5|-1,5)
> BC (2,75|1)
> AC (0,25|0,5)

Die stimmen alle [ok]

> So, dann würde ich durch die Zwei-Punkte-Form die
> Gleichung lösen.

>

Das ist ein Irrtum: die Verbindung von Seitenmitte und gegenüberliegendem Eckpunkt ist die Seitenhalbierende, nicht die Mittelsenkrechte. Du musst also jeweils die Steigung einer der Dreieckseiten ermitteln, damit die dazu orthogonale Steigung, und dann mit den Koorduinaten der gegenüberliegenden Ecke und mit der Punkt-Steigungsform arbeiten.

> Mein Ergebnis

>

> zu Seitenhalbierenden s1 von A zu BC

>

> f(s1)= (1-(-2))/(2,75-(-1))×(x-1)+(-2)

>

> f(s1)=0,8x-1,2

>

> Zu Seitenhalbierenden s2 von B zu AC

>

> f(s1)= (0,5-(-1))/(0,25-4)×(x-4)+(-1)

>

> f(s1)=-0,4x+2,6

>

> Ich denke mal, die s1 und s2 sollten stimmen (oder?).

>

> Jetzt das Problem:

>

> Zu Seitenhalbierenden s3 von C zu AB

>

> f(s1)= (-1,5-3)/(1,5-1,5)×(x-1,5)+3)

>
>

> Da kann doch etwas nicht stimmen…

>

> Würde ja den Bruch (-4,5)/0 erhalten.

>

> Irgendwie glaube ich, ich habe da etwas falsch gemacht und
> wäre über jeden Tipp, jede Korrektur und Gedankenansatz
> dankbar.

Wie lautet eigentlich die Aufgabe? ;-)

Gruß, Diophant

Bezug
                
Bezug
Gleichung d. Mittelsenkrechten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Fr 07.06.2013
Autor: hartlaubd

Ich danke.

Wenn ich nun die Steigung von [mm]AB[/mm] ausrechne, erhalte ich -5.

Dann eben [mm]-1:-5=0,2[/mm]

Diese mit den Koordinaten in (1,5|-1,5) in

[mm]y= m*x+b[/mm]

ergibt b=6

Erscheint mich richtig.


Die Steigung von [mm]BC[/mm] wäre dann

[mm]m=\bruch{3-(-1)}{1,5-4}={4}{-2,5}[/mm]

Auch hier wieder [mm]-1:(-1,6)=0,625[/mm]

Wenn ich das nun in [mm]y=m*x+b[/mm] einsetze, erhalte ich für b=-0,71875.

Richtig?

Und bei [mm]AC[/mm] erhalte ich die Steigung [mm]m=2[/mm]

Dann [mm]-1:2=-0,5[/mm]

In die Formel [mm]y=m*x+b[/mm] eingesetzt erhalte ich für b=0,625.

Richtig?


Bezug
                        
Bezug
Gleichung d. Mittelsenkrechten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Fr 07.06.2013
Autor: M.Rex


> Ich danke.

>

> Wenn ich nun die Steigung von [mm]AB[/mm] ausrechne, erhalte ich
> -5.

>

> Dann eben [mm]-1:-5=0,2[/mm]

>

> Diese mit den Koordinaten in (1,5|-1,5) in

>

> [mm]y= m*x+b[/mm]

>

> ergibt b=6

>

> Erscheint mich richtig.

Y=-5x+6 ist korrekt


>
>

> Die Steigung von [mm]BC[/mm] wäre dann

>

> [mm]m=\bruch{3-(-1)}{1,5-4}={4}{-2,5}[/mm]

>

> Auch hier wieder [mm]-1:(-1,6)=0,625[/mm]

>

> Wenn ich das nun in [mm]y=m*x+b[/mm] einsetze, erhalte ich für
> b=-0,71875.

>

> Richtig?

Y=0,625x-0,71875 ist ok.

>

> Und bei [mm]AC[/mm] erhalte ich die Steigung [mm]m=2[/mm]

>

> Dann [mm]-1:2=-0,5[/mm]

>

> In die Formel [mm]y=m*x+b[/mm] eingesetzt erhalte ich für b=0,625.

>

> Richtig?

>

y=-0,5x+0,625 ist ok.

Marius
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de