www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Gleichung einer Induktion
Gleichung einer Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung einer Induktion: Gleichung auflösen
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 21.07.2015
Autor: Windbeutel

Aufgabe
Dies ist eine Gleichung, mit deren Hilfe eine vollstandige Induktion bewiesen werden soll.
[mm] \bruch{2^k+(-1)^{k+2}}{3*2^{k-1}} [/mm] = [mm] \bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}} [/mm] + [mm] \bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}] [/mm]

Hallo,

ich habe ein Problem mit dieser Gleichung, bei der ich immer wieder an einem bestiemten Punkt hängen bleibe.

Die Daten habe ich mehrfach kontroliert, aber so wie sie hier stehen sind sie tatsächlich richtig.

Nun vermute ich, dass mir irgendwelche Umformungsregeln unbekannt sind und hoffe hier Hilfe zu finden.

[mm] \bruch{2^k+(-1)^{k+2}}{3*2^{k-1}} [/mm] = [mm] \bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}} [/mm] + [mm] \bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}] [/mm]

Auf der rechten Seite der Gleichung würde ich einen gemeinsammen HN suchen. Meine Idee wäre einfach, den letzten Bruch dort mit [mm] \bruch{2}{2} [/mm] zu multiplizieren.

Dann erreiche ich

= [mm] \bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}} [/mm] + [mm] \bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2*2^{k-3}}] [/mm]

Was mir erlaubt den Nenner 3*2*2^(k-3) umzuformen zu 3*2^(k-2).

Damit komme ich auf

= [mm] \bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}} [/mm] + [mm] \bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2^{k-2}}] [/mm]

Nun würde ich [mm] 2(2^{k-2}) [/mm] im Zähler umformen zu [mm] 2^{k-1}. [/mm]
Dann bekomme ich

= [mm] \bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}} [/mm] + [mm] \bruch{2^{k-1}+2*(-1)^{k-1}}{3*2^{k-2}}] [/mm]

Dann stelle ich wegen der Übersichtlichkeit den Zähler etwas um

[mm] =\bruch{1}{2}[\bruch{2^{k-1}+2^{k-1}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-2}}] [/mm]
Nun nutze ich die Möglichkeit den Nenner zu kürzen und erhalte

[mm] =\bruch{1}{2}[\bruch{2*2^{k}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-1}}] [/mm]

Bin ich bis hierher richtig?

Nun sieht der erste Teil des Zählers und der Nenner schon ganz gut aus, aber an [mm] (-1)^{k}+2*(-1)^{k-1} [/mm] beiße ich mir nun schon seit einiger Zeit die Zähne aus.

Ich bin wirklich noch am verzweifeln mit dieser Gleichung und wäre daher sehr dankbar, wenn mir jemand mit dem nächsten Schritt hilft bzw bisher begangene Fehler aufzeigt

        
Bezug
Gleichung einer Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Di 21.07.2015
Autor: hippias


> Dies ist eine Gleichung, mit deren Hilfe eine vollstandige
> Induktion bewiesen werden soll.
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =
> [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]
>  Hallo,
>  
> ich habe ein Problem mit dieser Gleichung, bei der ich
> immer wieder an einem bestiemten Punkt hängen bleibe.
>  

...

> Dann stelle ich wegen der Übersichtlichkeit den Zähler
> etwas um
>  
> [mm]=\bruch{1}{2}[\bruch{2^{k-1}+2^{k-1}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Nun nutze ich die Möglichkeit den Nenner zu kürzen und
> erhalte

Bis hierhin ist alles richtig...

>  
> [mm]=\bruch{1}{2}[\bruch{2*2^{k}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-1}}][/mm]
>  

... aber hier hast Du Dich vermutlich gewaltig verschrieben: es heisst im Zaehler [mm] $2^{k}$ [/mm] und nicht [mm] $2\cdot 2^{k}$; [/mm] im Nenner, wenn Du den Faktor [mm] $\frac{1}{2}$ [/mm] beibehalten moechtest, [mm] $3\cdot 2^{k-2}$. [/mm]

> Bin ich bis hierher richtig?
>  
> Nun sieht der erste Teil des Zählers und der Nenner schon
> ganz gut aus, aber an [mm](-1)^{k}+2*(-1)^{k-1}[/mm] beiße ich mir
> nun schon seit einiger Zeit die Zähne aus.

Eine Moeglichkeit zu erkennen, ob [mm] $(-1)^{k}+2\cdot(-1)^{k-1}= (-1)^{k+2}$ [/mm] ist, waere ersteinmal ein paar Werte fuer $k$ einzusetzen. Man erkennt es auch, indem Du im linken Term [mm] $(-1)^{k-1}$ [/mm] ausklammerst. Im Uebrigen nehme ich an, dass Du Dich verschrieben hast: es wird wohl [mm] $(-1)^{k+1}$ [/mm] statt [mm] $(-1)^{k+2}$ [/mm] heissen.

>
> Ich bin wirklich noch am verzweifeln mit dieser Gleichung
> und wäre daher sehr dankbar, wenn mir jemand mit dem
> nächsten Schritt hilft bzw bisher begangene Fehler
> aufzeigt


Bezug
        
Bezug
Gleichung einer Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Di 21.07.2015
Autor: fred97


> Dies ist eine Gleichung, mit deren Hilfe eine vollstandige
> Induktion bewiesen werden soll.
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =
> [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]
>  Hallo,
>  
> ich habe ein Problem mit dieser Gleichung, bei der ich
> immer wieder an einem bestiemten Punkt hängen bleibe.

Also für k=3 und k=4 ist obige Gl. falsch

FRED

>  
> Die Daten habe ich mehrfach kontroliert, aber so wie sie
> hier stehen sind sie tatsächlich richtig.
>  
> Nun vermute ich, dass mir irgendwelche Umformungsregeln
> unbekannt sind und hoffe hier Hilfe zu finden.
>  
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =
> [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]
>  
> Auf der rechten Seite der Gleichung würde ich einen
> gemeinsammen HN suchen. Meine Idee wäre einfach, den
> letzten Bruch dort mit [mm]\bruch{2}{2}[/mm] zu multiplizieren.
>  
> Dann erreiche ich
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2*2^{k-3}}][/mm]
>  
> Was mir erlaubt den Nenner 3*2*2^(k-3) umzuformen zu
> 3*2^(k-2).
>  
> Damit komme ich auf
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Nun würde ich [mm]2(2^{k-2})[/mm] im Zähler umformen zu [mm]2^{k-1}.[/mm]
>  Dann bekomme ich
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-1}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Dann stelle ich wegen der Übersichtlichkeit den Zähler
> etwas um
>  
> [mm]=\bruch{1}{2}[\bruch{2^{k-1}+2^{k-1}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Nun nutze ich die Möglichkeit den Nenner zu kürzen und
> erhalte
>  
> [mm]=\bruch{1}{2}[\bruch{2*2^{k}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-1}}][/mm]
>  
> Bin ich bis hierher richtig?
>  
> Nun sieht der erste Teil des Zählers und der Nenner schon
> ganz gut aus, aber an [mm](-1)^{k}+2*(-1)^{k-1}[/mm] beiße ich mir
> nun schon seit einiger Zeit die Zähne aus.
>
> Ich bin wirklich noch am verzweifeln mit dieser Gleichung
> und wäre daher sehr dankbar, wenn mir jemand mit dem
> nächsten Schritt hilft bzw bisher begangene Fehler
> aufzeigt


Bezug
        
Bezug
Gleichung einer Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Di 21.07.2015
Autor: rmix22


> Dies ist eine Gleichung, mit deren Hilfe eine vollstandige
> Induktion bewiesen werden soll.
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =  [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +  [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]

Wie hippias schon vermutet hat und fred97 anhand zweier Stichproben festgestellt  hat ist die Gleichung falsch. Links gehört [mm] $(-1)^{k+1}$ [/mm] anstelle von [mm] $(-1)^{k+2}$. [/mm]

> Nun sieht der erste Teil des Zählers und der Nenner schon
> ganz gut aus, aber an [mm](-1)^{k}+2*(-1)^{k-1}[/mm] beiße ich mir
> nun schon seit einiger Zeit die Zähne aus.

beachte, dass sich am Ergebnis von [mm] (-1)^n [/mm] mit $n [mm] \in \IN$ [/mm] nichts ändert, wenn du im Exponenten gerade Zahlen addierst oder subtrahierst und dass sich das Vorzeichen ändert, wenn du ungerade Zahlen addierst oder subtrahierst.
Demnach ist [mm] $(-1)^k=-(-1)^{k+1}$ [/mm] und [mm] $(-1)^{k-1}=(-1)^{k+1}$, [/mm] das sollte dir weiter helfen.

RMix

P.S.: Es ist auffällig, dass deine Frage in etwa dort ansetzt, wo die Diskussion in diesem Forum endet:

[]Diskussion in OnlineMathe







Bezug
        
Bezug
Gleichung einer Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 21.07.2015
Autor: reverend

Hallo Windbeutel,

hier noch eine Tube Senf.

> Dies ist eine Gleichung, mit deren Hilfe eine vollstandige
> Induktion bewiesen werden soll.
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =
> [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]

Wie rmix22 zu Recht feststellt, muss auf der linken Seite der Gleichung der Exponent der (-1) nicht k+2, sondern k+1 sein. Dann stimmts.

Da Du aber im folgenden nur die rechte Seite umformst, ist das für Deine Frage nicht erheblich (wohl aber für die zu zeigende Gleichheit).

>  Hallo,
>  
> ich habe ein Problem mit dieser Gleichung, bei der ich
> immer wieder an einem bestiemten Punkt hängen bleibe.
>  
> Die Daten habe ich mehrfach kontroliert, aber so wie sie
> hier stehen sind sie tatsächlich richtig.
>  
> Nun vermute ich, dass mir irgendwelche Umformungsregeln
> unbekannt sind und hoffe hier Hilfe zu finden.
>  
> [mm]\bruch{2^k+(-1)^{k+2}}{3*2^{k-1}}[/mm] =
> [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-2}+(-1)^{k-1}}{3*2^{k-3}}][/mm]
>  
> Auf der rechten Seite der Gleichung würde ich einen
> gemeinsammen HN suchen. Meine Idee wäre einfach, den
> letzten Bruch dort mit [mm]\bruch{2}{2}[/mm] zu multiplizieren.
>  
> Dann erreiche ich
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2*2^{k-3}}][/mm]
>  
> Was mir erlaubt den Nenner 3*2*2^(k-3) umzuformen zu
> 3*2^(k-2).
>  
> Damit komme ich auf
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2*2^{k-2}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Nun würde ich [mm]2(2^{k-2})[/mm] im Zähler umformen zu [mm]2^{k-1}.[/mm]
>  Dann bekomme ich
>
> = [mm]\bruch{1}{2}[\bruch{2^{k-1}+(-1)^k}{3*2^{k-2}}[/mm] +
> [mm]\bruch{2^{k-1}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]
>  
> Dann stelle ich wegen der Übersichtlichkeit den Zähler
> etwas um
>  
> [mm]=\bruch{1}{2}[\bruch{2^{k-1}+2^{k-1}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-2}}][/mm]

Soweit gut, ab jetzt gehts schief.

> Nun nutze ich die Möglichkeit den Nenner zu kürzen und
> erhalte
>  
> [mm]=\bruch{1}{2}[\bruch{2*2^{k}+ (-1)^{k}+2*(-1)^{k-1}}{3*2^{k-1}}][/mm]
>  
> Bin ich bis hierher richtig?

Nein. Rechne das nochmal nach.
Am einfachsten ist es, die 2 im Nenner (vom vorweg stehenden [mm] \tfrac{1}{2}) [/mm] einfach in den Hauptnenner zu multiplizieren, dann hast Du schon den gesuchten Nenner der linken Seite. Es bleibt also nur die Gleichheit des Zählers zu zeigen:

[mm] \blue{2^{k}+(-1)^{k+1}}=2^{k-1}+2^{k-1}+(-1)^k+2*(-1)^{k-1} [/mm]

Der blaue Teil ist der Zähler der ursprünglichen linken Seite, die rechte Seite entspricht Deiner bisherigen Umformung.

Zum weiteren Zusammenfassen genügt es auszuklammern:

[mm] \cdots=2*2^{k-1}+(-1)*(-1)^{k-1}+2*(-1)^{k-1}=2^k+(-1+2)*(-1)^{k-1}=\cdots [/mm]

Jetzt klarer?

Grüße
reverend

> Nun sieht der erste Teil des Zählers und der Nenner schon
> ganz gut aus, aber an [mm](-1)^{k}+2*(-1)^{k-1}[/mm] beiße ich mir
> nun schon seit einiger Zeit die Zähne aus.
>
> Ich bin wirklich noch am verzweifeln mit dieser Gleichung
> und wäre daher sehr dankbar, wenn mir jemand mit dem
> nächsten Schritt hilft bzw bisher begangene Fehler
> aufzeigt


Bezug
                
Bezug
Gleichung einer Induktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Mi 22.07.2015
Autor: Windbeutel

Danke für eure Hilfe,


entschuldigung, es hat sich herausgestellt, das ich da tatsächlich einen Fehler im Exponenten der rechten Gleichungsseite habe.

Mein Fehler lag wohl darin, dass ich die ganze Zeit falsch mit dem nenner umgegangen bin.

Danke für eure Hilfe.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de