www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichung lösen
Gleichung lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: in den komplexen Zahlen
Status: (Frage) beantwortet Status 
Datum: 11:31 Di 26.02.2008
Autor: Kreide

Aufgabe
[mm] z^4\overline{z}+3z²-4=0 z\in \IC [/mm]

[mm] (x+iy)^3(x-iy)+3(x+iy)²-4=0 [/mm]
(x+iy)²(x+iy)(x-iy)+3(x+iy)²-4=0
(x²+2xyi-y²)(x²+y²)+3x²+6xyi-3y²-4=0
[mm] x^{4}+2x^3yi-y²x²+x²y²+2xy^3i-y^4+3x²+6xyi-3y²-4=0 [/mm]
[mm] x^{4}+2x^3yi+2xy^3i-y^4+3x²+6xyi-3y²-4=0 [/mm]

Aufteilen in Imaginär und realteil:

Real:
[mm] x^4+3x³-y^4-3y²-4=0 [/mm]

Imaginär:
[mm] 2x^{3}y+2xy^{3}+6xy=0 [/mm]
xy(2x²+2y²+6)=0
[mm] \Rightarrow [/mm]
1)x=0 oder
2)y=0 oder
3)2x²+2y²+6=0 (bzw [mm] x=\wurzel{-3-y²}) [/mm]
-------------------
das x jeweils in den realteil einsetzen und dann nach y umformen:
zu1)
[mm] -y^4-3y²-4=0 [/mm]
y²(-y²-3)=4
BESITZT KEINE RELLEN LÖSUNGEN

zu 2)
[mm] x^4+3x²-4=0 [/mm]
BESITZT KEINE RELLEN LÖSUNGEN

zu 3)
[mm] (-3-y)²+3(-3-y²)-y^4-3y²-4=0 [/mm]
[mm] 9+6y²+y^4-9-3y²-y^4-3y²-4=0 [/mm]
-4=0
FALSCHE AUSSAGE

[mm] \Rightarrow [/mm] es gibt keine Lösung...

das kann aber nicht sein, aber ich sehe nicht, was ich falsch gemacht hab... :(




        
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Di 26.02.2008
Autor: Kreide

hab grad nen tippfehler entdeckt in der aufgabenstellung....

da soll keine 4 sondern eine 3 stehen

Bezug
        
Bezug
Gleichung lösen: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:47 Di 26.02.2008
Autor: Roadrunner

Hallo Kreide!


> [mm](x+iy)^3(x-iy)+3(x+iy)²-4=0[/mm]
> (x+iy)²(x+iy)(x-iy)+3(x+iy)²-4=0
> (x²+2xyi-y²)(x²+y²)+3x²+6xyi-3y²-4=0
> [mm]x^{4}+2x^3yi-y²x²+x²y²+2xy^3i-y^4+3x²+6xyi-3y²-4=0[/mm]
> [mm]x^{4}+2x^3yi+2xy^3i-y^4+3x²+6xyi-3y²-4=0[/mm]

[ok]

  

> Aufteilen in Imaginär und realteil:
>  
> Real:
> [mm]x^4+3x³-y^4-3y²-4=0[/mm]

[notok] Wohl Tippfehler: [mm] $$x^4+3*x^{\red{2}}-y^4-3*y^2-4 [/mm] \ = \ 0$$

  

> Imaginär:
> [mm]2x^{3}y+2xy^{3}+6xy=0[/mm]

[ok]


> xy(2x²+2y²+6)=0
> [mm]\Rightarrow[/mm]
> 1)x=0 oder
> 2)y=0 oder
> 3)2x²+2y²+6=0 (bzw [mm]x=\wurzel{-3-y²})[/mm]

[ok]


> das x jeweils in den realteil einsetzen und dann nach y umformen:

[ok]


> zu1)
> [mm]-y^4-3y²-4=0[/mm]
> y²(-y²-3)=4
>  BESITZT KEINE RELLEN LÖSUNGEN

[ok]

  

> zu 2)
> [mm]x^4+3x²-4=0[/mm]
> BESITZT KEINE RELLEN LÖSUNGEN

[notok] Hier solltest Du nochmal nachrechnen. Ich erhalte: [mm] $x_{1/2} [/mm] \ = \ [mm] \pm [/mm] \ 1$ .

  

> zu 3)
> [mm](-3-y)²+3(-3-y²)-y^4-3y²-4=0[/mm]
> [mm]9+6y²+y^4-9-3y²-y^4-3y²-4=0[/mm]
>  -4=0

[ok]


Gruß vom
Roadrunner


Bezug
                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Di 26.02.2008
Autor: Kreide

Danke für's nachschauen!!!!


> [notok] Wohl Tippfehler: [mm]x^4+3*x^{\red{2}}-y^4-3*y^2-4 \ = \ 0[/mm]
>  

ja war wohl nen tippfehler :)

> > zu 2)
>  > [mm]x^4+3x²-4=0[/mm]

>  > BESITZT KEINE RELLEN LÖSUNGEN

>  
> [notok] Hier solltest Du nochmal nachrechnen. Ich erhalte:
> [mm]x_{1/2} \ = \ \pm \ 1[/mm] .
>  

ja, hast recht...


die lösung wären dann also die Zahlenpaare (1,0) und (-1,0) stimmt's`?


Bezug
                        
Bezug
Gleichung lösen: stimmt
Status: (Antwort) fertig Status 
Datum: 11:58 Di 26.02.2008
Autor: Roadrunner

Hallo Kreide!


[daumenhoch] Das stimmt ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de