www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung lösen
Gleichung lösen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Nullstellenformel
Status: (Frage) beantwortet Status 
Datum: 00:04 Do 10.03.2005
Autor: jessieonline

Hallo,

ich soll folgende Gleichung lösen:

(x+4) (x-5) = 0

x²-5x+4x-20=0 /+20

x²-5x+4x=20

x²-1x=20

Nun ist mir schon klar, dass ich die Nullstellenformel für die quadratische Funktion verwenden muss. Nur gibt es im Tafelwerk ja einmal die Formel für die "Allgemeine Form" und  die Formel für die "Normalform" und ich weiß einfach nie welche Formel ich nutzen muss :-(( Woran erkenne ich das denn allgemein immer genau? Danke!


        
Bezug
Gleichung lösen: Nullstellenformel
Status: (Antwort) fertig Status 
Datum: 00:37 Do 10.03.2005
Autor: payon

Hi Jessie,
Du kannst die Gleichung auch viel leicher lösen. Denn ein Produkt ist immer dann Null, wenn einer der Faktoren Null ist. Somit sind hier hier die Faktoren jeweils der Inhalt der Klammern.
Du kannst also hier die beiden Klammern x+4=0 sowie x-5=0 nach x lösen, und du hast die zwei Lösungen.
Dies ist einfacher, da du somit keine Nullstellenformel braucht.

Ansonsten kannst du es natürlich auch mit der Nullstellenformel lösen. Kannst du denn vielleicht mal schreiben, wie die Normalform bzw. allgemeine Form lauten? Dann könnt ich sie dir auch bestimmt erklären.

gruss

martin

Bezug
        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Do 10.03.2005
Autor: informix

Hallo Jessie,
> Hallo,
>  
> ich soll folgende Gleichung lösen:
>  
> (x+4) (x-5) = 0
>  
> x²-5x+4x-20=0 /+20
>  
> x²-5x+4x=20
>  
> x²-1x=20
>  
> Nun ist mir schon klar, dass ich die Nullstellenformel für
> die quadratische Funktion verwenden muss. Nur gibt es im
> Tafelwerk ja einmal die Formel für die "Allgemeine Form"
> und  die Formel für die "Normalform" und ich weiß einfach
> nie welche Formel ich nutzen muss :-(( Woran erkenne ich
> das denn allgemein immer genau? Danke!

[guckstduhier] MBPQFormel in der MBMatheBank.

Wie payon schon schrieb, kann du in der ersten Form die Nullstellen sofort ablesen.
Deine weiteren Umformungen sind daher nicht nötig.

allgemein gilt:
wenn eine (quadratische) Gleichung die Form hat [mm] $x^2+px+q=0$, [/mm]
dann kannst du sie stets mit der PQFormel versuchen zu lösen.

Oder den MBSatz von Vieta anwenden. Mit ein wenig Übung geht das blitzschnell!

Ist der Faktor vor dem [mm] x^2 [/mm] ungleich 1, also: [mm] $ax^2+bx+c=0$ [/mm] mit $a [mm] \ne [/mm] 1$,
dann verwendest du die MBABCFormel, manche nennen sie auch "Mitternachtsformel" oder allgemeine Lösungsformel für quadratische Gleichungen.

Jetzt klar(er)?


Bezug
                
Bezug
Gleichung lösen: PQ oder ABC?
Status: (Frage) beantwortet Status 
Datum: 09:45 Mo 14.03.2005
Autor: jessieonline

Genau da liegt das Problem, wann muss ich allgemein die PQ und wann die ABC-Formel nehmen? Leider kann man in Informix Antwort die Formeln nicht lesen :-(

Die Lösung für die Gleichung oben übrigens 1 und -5?? Danke!

Bezug
                        
Bezug
Gleichung lösen: Erläuterung
Status: (Antwort) fertig Status 
Datum: 10:27 Mo 14.03.2005
Autor: Loddar

Hallo Jessie!


So wie die Namen der beiden Formeln lauten, so kannst Du sie auch einsetzen.


Für die Form (sog. Allgemeine Form) [mm] $\red{a}*x^2 [/mm] + [mm] \green{b}*x [/mm] + [mm] \blue{c} [/mm] \ = \ 0$ bietet sich die MBABCFormel an:
[mm] $x_{1,2} [/mm] \ = \ [mm] \bruch{-\green{b} \ \pm \ \wurzel{\green{b}^2 - 4*\red{a}*\blue{c}}}{2*\red{a}}$ [/mm]



Für die Normalform [mm] $\red{1}*x^2 [/mm] + [mm] \green{p}*x [/mm] + [mm] \blue{q} [/mm] \ = \ 0$ kannst du die MBPQFormel verwenden.

Die Normalform erkennst Du daran, daß vor dem quadratischen Glied der Faktor [mm] $\red{1}$ [/mm] steht.

[mm] $x_{1,2} [/mm] \ = \ - [mm] \bruch{\green{p}}{2} [/mm] \ [mm] \pm [/mm] \ [mm] \wurzel{\left(\bruch{\green{p}}{2}\right)^2 - \blue{q}}$ [/mm]


[aufgemerkt] Du brauchst Dir auch nur eine der beiden Formeln zu merken, da Du ja aus der allgemeinen Form sehr schnell in die Normalform umstellen kannst:

[mm] $a*x^2 [/mm] + b*x + c \ = \ 0$    $| \ : a \ [mm] \not= [/mm] \ 0$

[mm] $1*x^2 [/mm] + [mm] \underbrace{\bruch{b}{a}}_{= \ p} [/mm]  * x + [mm] \underbrace{\bruch{c}{a}}_{= \ q} [/mm] \ = \ 0$

[mm] $1*x^2 [/mm] + p*x + q \ = \ 0$


Ich persönlich arbeite fast ausschließlich mit der MBPQFormel !!


Ich hoffe, ich konnte Dir etwas weiterhelfen ...

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de