www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Gleichung lösen/bestimmen
Gleichung lösen/bestimmen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen/bestimmen: ungleichung mit 3 variablen
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 08.10.2013
Autor: Illihide

Aufgabe
Seien x; y; z beliebige positive reelle Zahlen. Zeigen Sie
        3
----------------   < 1/3*(X+Y+Z)
(1/X)+(1/Y)+(1/Z)  =
Für genau welche Zahlen gilt das Gleichheitszeichen ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wie kann ich diese aufgabe lösen? Ich bräuchte Hilfe beim Lösungs weg

        
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 08.10.2013
Autor: Al-Chwarizmi


> Seien x; y; z beliebige positive reelle Zahlen. Zeigen Sie
>          3
>  ----------------   < 1/3*(X+Y+Z)
>  (1/X)+(1/Y)+(1/Z)  =

Mit dem Formeleditor kannst du dies so darstellen:

    [mm] $\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ \le\ \frac{x+y+z}{3}$ [/mm]


> Für genau welche Zahlen gilt das Gleichheitszeichen ?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Wie kann ich diese aufgabe lösen? Ich bräuchte Hilfe
> beim Lösungs weg


Hallo Illihide,

        [willkommenmr]

es wird hier erwartet, dass die Anfragenden nicht
einfach Aufgaben stellen, sondern auch berichten,
welche eigenen Lösungsversuche sie schon unter-
nommen haben.
Falls du noch nicht weißt, wie du anfangen sollst,
dann probier halt mal einfach, die Ungleichung durch
Umformungen auf eine andere, eventuell besser
zugängliche Form zu bringen.
Vielleicht wäre es auch nützlich, die Ungleichung
zunächst in sinngemäßer Weise von 3 Unbekannten
auf eine analoge Ungleichung mit nur 2 Unbekannten
x und y zu reduzieren und zunächst diese zu unter-
suchen.

LG ,  Al-Chwarizmi




Bezug
                
Bezug
Gleichung lösen/bestimmen: eigene Versuche
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 08.10.2013
Autor: Illihide

Bruch Gleichnamig machen:
3*X*Y*Z
----------- =1/3*(x+y+z)
x*y+x*z+y*z <

Irgentwie vereinfachen:

3< (x+y+z)*(1/x+1/y+1/z)
=
< 3+x/y+x/z+y/x+y/z+z/x+z/y
=  

Das waren mein versuche... und damit bin ich nicht weiter gekommen, denn so konnte ich keine Variable entfernen bzw die ganze Formel vereimfachen.

Das ich auch meine falschen Versuche reinstellen sollte wusste ich nicht :)

Bezug
                        
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Di 08.10.2013
Autor: leduart

Hallo
schreib die Gleichung ohne Nenner,d.h mult deine Gl mit dem Nenner, dann solltest du mehr sehen, da die Gl symetrisch in x,y,z ist kannst du etwa annehmen [mm] x\le y\le [/mm] z

Bezug
                                
Bezug
Gleichung lösen/bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Di 08.10.2013
Autor: Illihide

Ich hatte die gleichung mit dem Nenner mult, doch dan steht ja da:
3<(x+y+z)*(1/x+1/y+1/z)
=

doch wenn ich die klammern auflöse dann komm ich ja auch nicht weiter weil keine Variable rausfällt bzw sic auflöst

Bezug
                        
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 08.10.2013
Autor: tobit09

Hallo Illihide,


> Bruch Gleichnamig machen:
>  3*X*Y*Z
>  ----------- =1/3*(x+y+z)
>  x*y+x*z+y*z <

Bis hierhin stimmt es.

> Irgentwie vereinfachen:
>  
> 3< (x+y+z)*(1/x+1/y+1/z)
>   =

Das stimmt, wenn du die 3 durch eine 9 ersetzt. Übrigens erhältst du diese Ungleichung direkt aus der zu zeigenden Ungleichung durch eine Äquivalenzumformung.

>   < 3+x/y+x/z+y/x+y/z+z/x+z/y
> =  

Hier hast du offenbar die rechte Seite ausmultipliziert.

Fassen wir zusammen: Die zu zeigende Ungleichung ist gleichbedeutend mit

     [mm] $9\le3+x/y+x/z+y/x+y/z+z/x+z/y$, [/mm]

also auch zu

     [mm] $6\le [/mm] (x/y+y/x)+(x/z+z/x)+(y/z+z/y)$.

Zeige nun, dass die drei Klammerausdrücke jeweils [mm] $\ge2$ [/mm] sind.
(Es genügt, dass für einen der Klammerausdrücke zu zeigen. Dann kannst du das Gezeigte auf die beiden anderen anwenden.)
Führe dazu wieder Äquivalenzumformungen mit der zu zeigenden Ungleichung durch.

Wie weit kommst du? Irgendwann könnte eine binomische Formel hilfreich sein...


Viele Grüße
Tobias

Bezug
                                
Bezug
Gleichung lösen/bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 08.10.2013
Autor: Illihide

also erstmal schon vielen dank tobi das du mir hilfst :)

ich hab jz [mm] (x^2+y^2)/x*y [/mm] > 2
                         =

Kurze Frage: wie bist du auf die idee mit der > 2 gekommmen?

Bezug
                                        
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Di 08.10.2013
Autor: tobit09


> ich hab jz [mm](x^2+y^2)/x*y[/mm] > 2
>                           =

Ja. Weiter äquivalent umgeformt:

     [mm] $x^2+y^2\ge [/mm] 2xy$

bzw.

     [mm] $x^2-2xy+y^2\ge [/mm] 0$.

Denke jetzt an meinen Tipp mit einer binomischen Formel!

  

> Kurze Frage: wie bist du auf die idee mit der > 2
> gekommmen?

Die Summe der drei Klammerausdrücke sollte [mm] $\ge [/mm] 6$ sein. Da kam mir die Idee, dass vielleicht jeder der Klammerausdrücke einen Beitrag [mm] $\ge [/mm] 2$ leisten könnte. Das habe ich dann geprüft.

Bezug
                                                
Bezug
Gleichung lösen/bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Di 08.10.2013
Autor: Illihide

und dann y und x berechnen? mit der pq formel?

Bezug
                                                        
Bezug
Gleichung lösen/bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 08.10.2013
Autor: Illihide

bzw dann habe ich [mm] (x-y)^2>0 [/mm]
                         =

Bezug
                                                                
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Di 08.10.2013
Autor: tobit09


> bzw dann habe ich [mm](x-y)^2>0[/mm]
> =

[ok] Und gilt diese Ungleichung für alle (positiven) reellen Zahlen $x$ und $y$?

Bezug
                                                                        
Bezug
Gleichung lösen/bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 08.10.2013
Autor: Illihide

ja gilt es :)
und was hab ich damit jz bewiesen?

Bezug
                                                                                
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Di 08.10.2013
Autor: tobit09


> ja gilt es :)

Genau.

>  und was hab ich damit jz bewiesen?

Die Frage ist ziemlich berechtigt, da wir die größte Zeit mit Äquivalenzumformungen rückwärts von dem ausgegangen sind, was wir eigentlich zeigen wollen.

Wir haben überlegt:

Für positive reelle Zahlen $x$ und $y$ ist die Aussage

     [mm] $x/y+y/x\ge [/mm] 2$

äquivalent zu einer wahren Aussage, also selbst wahr.

Also (angewandt auf x und z sowie y und z) gilt auch

     [mm] $x/z+z/x\ge [/mm] 2$

und

     [mm] $y/z+z/y\ge [/mm] 2$.

Also gilt

     [mm] $(x/y+y/x)+(x/z+z/x)+(y/z+z/y)\ge [/mm] 6$.

Das ist wiederum äquivalent zu der zu zeigenden Ungleichung. Also gilt auch diese.

Bezug
                                                        
Bezug
Gleichung lösen/bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 08.10.2013
Autor: tobit09


> und dann y und x berechnen? mit der pq formel?

Die Behauptung, die wir gerade zeigen wollen, ist ja, dass die Ungleichung für alle (positiven) reellen Zahlen x und y gilt. Also werden wir wohl kaum konkrete Werte für x und y aus der UNgleichung bekommen.

(Ob man durch betrachten der entsprechenden Gleichung anstelle der Ungleichung auch irgendwie ans Ziel kommen könnte, überblicke ich auf die Schnelle nicht. Der Weg aus deiner anderen Frage ist auf jeden Fall einfacher.)

Bezug
                                                                
Bezug
Gleichung lösen/bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Di 08.10.2013
Autor: Illihide

ok tobi :) hab vielen dank :) ich habe es jz denke ich verstanden. falls nicht frage ich noch mal ;) nur wirklich vielen dank das du so gduldig warst

Bezug
                                                                        
Bezug
Gleichung lösen/bestimmen: wann gilt Gleichheit ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Di 08.10.2013
Autor: Al-Chwarizmi

Hallo Illihide,

mit meinem Tipp, zuerst mal die analoge Ungleichung
mit nur 2 Unbekannten zu betrachten, also anstatt

$ [mm] \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ \le\ \frac{x+y+z}{3} [/mm] $

zuerst diese:  

$ [mm] \frac{2}{\frac{1}{x}+\frac{1}{y}}\ \le\ \frac{x+y}{2} [/mm] $

hatte ich exakt das im Sinn, worauf der Tipp von Tobias
ebenfalls hinausführt.

Wenn du übrigens für diese Ungleichung die binomische
Zerlegung genau anschaust, kannst du merken, dass
die Terme links und rechts nur dann gleich sind, wenn
x=y ist. Für die ursprüngliche Ungleichung folgt daraus,
dass die Gleichung nur dann zutreffen kann, wenn x=y,
y=z und z=x ist, also  x=y=z  !

LG ,   Al-Chw.

Bezug
                                                                                
Bezug
Gleichung lösen/bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Di 08.10.2013
Autor: Illihide

ja das ist etwas einfacher das stimmt :)
auch dir vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de