www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichung lokal x,y auflösen
Gleichung lokal x,y auflösen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lokal x,y auflösen: Übung
Status: (Frage) beantwortet Status 
Datum: 18:11 Mo 22.07.2013
Autor: ellegance88

Aufgabe
Für welche Punkte (x,y) lässt sich die Gleichung [mm] (x^2+y^2)^2=2(x^2-y^2) [/mm] lokal nach x bzw nach y auflösen?

Hallo,

[mm] f(x,y)=(x^2+y^2)^2=2(x^2-y^2) [/mm]
[mm] f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2 [/mm]

[mm] \bruch{df}{dy} [/mm] = [mm] 4x^2y+4y^3+4y=0 [/mm]

[mm] 4y(x^2+y^2+4)=0 [/mm]
y=0

Für y=0
x=0 oder [mm] x=\wurzel{2},-\wurzel{2} [/mm]
überall lokal nach y-Auflösbar außer in (0,0) [mm] (+-\wurzel{2},0) [/mm]

nach x:

[mm] \bruch{df}{dx} 4x^3+4xy^2-4x=0 [/mm]
[mm] 4x(x^2+y^2-1)=0 [/mm]

1.Fall x=0
[mm] y^4=-2y^2 [/mm]
[mm] y^4+2y^2=0 [/mm]
y=0

2.Fall [mm] x^2+y^2=1 [/mm]

[mm] 1=2(x^2-y^2) [/mm]
[mm] 1=2(1-y^2-y^2) [/mm]
[mm] 1=2(-2y^2+1) [/mm]

[mm] y=+-{\bruch{1}{2}} [/mm]

überall lokal nach x-Auflösbar außer in (0,0) [mm] (+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}}) [/mm]


ist das richtig?

Lg

        
Bezug
Gleichung lokal x,y auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mo 22.07.2013
Autor: schachuzipus

Hallo ellegance,


> Für welche Punkte (x,y) lässt sich die Gleichung
> [mm](x^2+y^2)^2=2(x^2-y^2)[/mm] lokal nach x bzw nach y auflösen?
> Hallo,

>

> [mm]f(x,y)=(x^2+y^2)^2=2(x^2-y^2)[/mm]
> [mm]f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2[/mm]

???

[mm] $f(x,y):=(x^2+y^2)^2-2(x^2-y^2)$ [/mm]


Nun [mm] $\nabla [/mm] f(x,y)$ bestimmen und schauen, für welche $(x,y)$ dieser [mm] $\neq\vektor{0\\0}$ [/mm] ist ...

>

> [mm]\bruch{df}{dy}[/mm] = [mm]4x^2y+4y^3+4y=0[/mm]

>

> [mm]4y(x^2+y^2+4)=0[/mm]
> y=0

>

> Für y=0
> x=0 oder [mm]x=\wurzel{2},-\wurzel{2}[/mm]
> überall lokal nach y-Auflösbar außer in (0,0)
> [mm](+-\wurzel{2},0)[/mm]

>

> nach x:

>

> [mm]\bruch{df}{dx} 4x^3+4xy^2-4x=0[/mm]
> [mm]4x(x^2+y^2-1)=0[/mm]

>

> 1.Fall x=0
> [mm]y^4=-2y^2[/mm]
> [mm]y^4+2y^2=0[/mm]
> y=0

>

> 2.Fall [mm]x^2+y^2=1[/mm]

>

> [mm]1=2(x^2-y^2)[/mm]
> [mm]1=2(1-y^2-y^2)[/mm]
> [mm]1=2(-2y^2+1)[/mm]

>

> [mm]y=+-{\bruch{1}{2}}[/mm]

>

> überall lokal nach x-Auflösbar außer in (0,0)
> [mm](+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}})[/mm]

>
>

> ist das richtig?

>

> Lg

Gruß
schachuzipus

Bezug
                
Bezug
Gleichung lokal x,y auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 22.07.2013
Autor: ellegance88

Ich habe mal jetzt eine Frage es kann doch nicht sein, dass das komplett falsch ist? so hat der Übungsleiter es gemacht bei der gleichen Aufgabe mit anderen Zahlen. ich habe es analog 1 zu 1 so übernommen.

nun bin ich verwirrt? egal welche Aufgabe er gemacht hat ist falsch sei es diese hier oder die mit dem Integral vorher.

Lg,


Bezug
        
Bezug
Gleichung lokal x,y auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 22.07.2013
Autor: leduart

Hallo
> Für welche Punkte (x,y) lässt sich die Gleichung
> [mm](x^2+y^2)^2=2(x^2-y^2)[/mm] lokal nach x bzw nach y auflösen?
>  Hallo,
>  
> [mm]f(x,y)=(x^2+y^2)^2=2(x^2-y^2)[/mm]
>  [mm]f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2[/mm]

so kann man f(x,y) nicht schreiben!
aber diese f(x,y hat du ja auch nicht abgeleitet sonderm
[mm]f(x,y)=(x^2+y^2)^2-2(x^2-y^2)[/mm]

> [mm]\bruch{df}{dy}[/mm] = [mm]4x^2y+4y^3+4y=0[/mm]
>  
> [mm]4y(x^2+y^2+4)=0[/mm]
>  y=0
>
> Für y=0
>  x=0 oder [mm]x=\wurzel{2},-\wurzel{2}[/mm]
>  überall lokal nach y-Auflösbar außer in (0,0)
> [mm](+-\wurzel{2},0)[/mm]

richtig, besser die P punkte angeben

> nach x:
>  
> [mm]\bruch{df}{dx} 4x^3+4xy^2-4x=0[/mm]
>  [mm]4x(x^2+y^2-1)=0[/mm]
>  
> 1.Fall x=0
>  [mm]y^4=-2y^2[/mm]
>  [mm]y^4+2y^2=0[/mm]
>  y=0
>  

richtig

> 2.Fall [mm]x^2+y^2=1[/mm]
>  
> [mm]1=2(x^2-y^2)[/mm]
>  [mm]1=2(1-y^2-y^2)[/mm]
>  [mm]1=2(-2y^2+1)[/mm]
>  
> [mm]y=+-{\bruch{1}{2}}[/mm]

das ist falsch , das ist [mm] y^2 [/mm] nicht y
aber sonst richtig.

>  
> überall lokal nach x-Auflösbar außer in (0,0)
> [mm](+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}})[/mm]

wieder die schlechte Schreiberise mit +- und y falsch.  
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de