www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichung mit komplexen Zahlen
Gleichung mit komplexen Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Fr 01.11.2013
Autor: bavarian16

Aufgabe
a) Welche komplexe Zahl z erfüllt die Gleichung:
         z - 1 + 2iz* - i = 0                                        

b) Bestimmen Sie die reellen Zahlen x,y so, dass [mm] (x+iy)^2 [/mm] = 2i

Das * ist KEIN Multiplikationszeichen sondern ein Sternchen, wahrscheinlich das Symbol für konjugiert komplex oder?

a)Ich weiß nicht so recht wie ich die Aufgabe angehen soll. Ich könnte die komplexen Zahlen z bzw z* in allgebraischer Form schreiben.

(x+iy) - 1 + 2i(x-iy) - i = 0

kann ich die Gleichung dann folgender Masen zusammen fassen und bringt mir das überhaupt was?

(x+iy) + 2ix - 2(i)^2y - i = 1
(x+iy) + 2ix + 2y - i = 1             (weil [mm] i^2=-1) [/mm]

Aber ich weiß nicht wie ich jetzt weiter machen kann.

b) Also ich würd Wurzelziehen auf beiden Seiten so, dass ich hab:
(x+iy) = √2i

Weiter weiß ich nicht...
Vielleicht kann man das i auch in Eula Form umschreiben: Bringt das was?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Fr 01.11.2013
Autor: abakus


> a) Welche komplexe Zahl z erfüllt die Gleichung:
> z - 1 + 2iz* - i = 0

>
>

> b) Bestimmen Sie die reellen Zahlen x,y so, dass [mm](x+iy)^2[/mm] =
> 2i
> Das * ist KEIN Multiplikationszeichen sondern ein
> Sternchen, wahrscheinlich das Symbol für konjugiert
> komplex oder?

>

> a)Ich weiß nicht so recht wie ich die Aufgabe angehen
> soll. Ich könnte die komplexen Zahlen z bzw z* in
> allgebraischer Form schreiben.

>

> (x+iy) - 1 + 2i(x-iy) - i = 0

>

> kann ich die Gleichung dann folgender Masen zusammen fassen
> und bringt mir das überhaupt was?

>

> (x+iy) + 2ix - 2(i)^2y - i = 1
> (x+iy) + 2ix + 2y - i = 1 (weil [mm]i^2=-1)[/mm]

Hallo,
bis jetzt war das ganz gut.
Jetzt sortieren wir die linke Seite mal nach Termen mit i und Termen ohne i. Die Gleichung lautet dann
x+2y+i*(y+2x-1)=1
Also besitzt die linke Seite den Realteil 1 (und den Imaginärteil 0).
Daraus bekommst du das Gleichungssystem 
x+2y=1
y+2x-1=0.
Gruß Abakus



>

> Aber ich weiß nicht wie ich jetzt weiter machen kann.

>

> b) Also ich würd Wurzelziehen auf beiden Seiten so, dass
> ich hab:
> (x+iy) = √2i

>

> Weiter weiß ich nicht...
> Vielleicht kann man das i auch in Eula Form umschreiben:
> Bringt das was?

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Gleichung mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Fr 01.11.2013
Autor: bavarian16


> > a) Welche komplexe Zahl z erfüllt die Gleichung:
>  > z - 1 + 2iz* - i = 0

>  >
>  >
>  > b) Bestimmen Sie die reellen Zahlen x,y so, dass

> [mm](x+iy)^2[/mm] =
>  > 2i

>  > Das * ist KEIN Multiplikationszeichen sondern ein

>  > Sternchen, wahrscheinlich das Symbol für konjugiert

>  > komplex oder?

>  >
>  > a)Ich weiß nicht so recht wie ich die Aufgabe angehen

>  > soll. Ich könnte die komplexen Zahlen z bzw z* in

>  > allgebraischer Form schreiben.

>  >
>  > (x+iy) - 1 + 2i(x-iy) - i = 0

>  >
>  > kann ich die Gleichung dann folgender Masen zusammen

> fassen
>  > und bringt mir das überhaupt was?

>  >
>  > (x+iy) + 2ix - 2(i)^2y - i = 1

>  > (x+iy) + 2ix + 2y - i = 1 (weil [mm]i^2=-1)[/mm]

>  Hallo,
>  bis jetzt war das ganz gut.
>  Jetzt sortieren wir die linke Seite mal nach Termen mit i
> und Termen ohne i. Die Gleichung lautet dann
>  x+2y+i*(y+2x-1)=1
>  Also besitzt die linke Seite den Realteil 1 (und den
> Imaginärteil 0).

Warum? Ich versteh die Umformung nach "i" und "nicht i" aber wo liest du den Real- bzw Imaginärteil ab?

>  Daraus bekommst du das Gleichungssystem 
>  x+2y=1
>  y+2x-1=0.

Wie stellst du dieses Gleichungssystem auf? Könnt es nicht genau anders rum sein? Also:
x+2y=0
y+2x-1=1

>  Gruß Abakus
>  
>
>
> >
>  > Aber ich weiß nicht wie ich jetzt weiter machen kann.

>  >
>  > b) Also ich würd Wurzelziehen auf beiden Seiten so,

> dass
>  > ich hab:

>  > (x+iy) = √2i

>  >
>  > Weiter weiß ich nicht...

>  > Vielleicht kann man das i auch in Eula Form

> umschreiben:
>  > Bringt das was?

>  >
>  > Ich habe diese Frage in keinem Forum auf anderen

>  > Internetseiten gestellt.


Bezug
                        
Bezug
Gleichung mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Fr 01.11.2013
Autor: angela.h.b.


> > Die Gleichung lautet dann
> > [mm] \green{x+2y}+i*\red{(y+2x-1)}=1 [/mm]
> > Also besitzt die linke Seite den Realteil 1 (und den
> > Imaginärteil 0).
> Warum? Ich versteh die Umformung nach "i" und "nicht i"
> aber wo liest du den Real- bzw Imaginärteil ab?

Hallo,

der Imaginärteil ist die reelle Zahl, die mit i multipliziert wird (rot), der Realteil der Teil ohne i (grün).

> > Daraus bekommst du das Gleichungssystem 
> > x+2y=1
> > y+2x-1=0.
> Wie stellst du dieses Gleichungssystem auf? Könnt es
> nicht genau anders rum sein? Also:
> x+2y=0
> y+2x-1=1

Nein.

Es ist [mm] \green{x+2y}+i*\red{(y+2x-1)}=1=\green{1}+\red{0}*i. [/mm]

Also müß jeweils das Grüne gleich sein, und das Rote.

LG Angela
 

Bezug
                                
Bezug
Gleichung mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Fr 01.11.2013
Autor: bavarian16


>
> > > Die Gleichung lautet dann
>  > > [mm]\green{x+2y}+i*\red{(y+2x-1)}=1[/mm]

>  > > Also besitzt die linke Seite den Realteil 1 (und den

>  > > Imaginärteil 0).

>  > Warum? Ich versteh die Umformung nach "i" und "nicht i"

>  > aber wo liest du den Real- bzw Imaginärteil ab?

>  
> Hallo,
>  
> der Imaginärteil ist die reelle Zahl, die mit i
> multipliziert wird (rot), der Realteil der Teil ohne i
> (grün).

Alles klar. Danke

>  
> > > Daraus bekommst du das Gleichungssystem 
>  > > x+2y=1

>  > > y+2x-1=0.

>  > Wie stellst du dieses Gleichungssystem auf? Könnt es

>  > nicht genau anders rum sein? Also:

>  > x+2y=0

>  > y+2x-1=1

>  
> Nein.
>  
> Es ist
> [mm]\green{x+2y}+i*\red{(y+2x-1)}=1=\green{1}+\red{0}*i.[/mm]
>  
> Also müß jeweils das Grüne gleich sein, und das Rote.

Wenn jetzt eine 2 hinter dem Gleichheitszeichen stehen würde hieße das, dass mein Realteil=2 ist. Und was muss hinter dem Gleichheitszeichen stehen dass mein Imaginärteil nicht 0 ist? Wie sähe so eine Lösung aus?

Es ist also das Ziel auf einer Seite der Gleichung Irgendwas (eine komplexe Zahl in der Form x+iy) mit einem i und Irgendwas ohne i stehen zu haben. Was ich jetzt nur nicht verstehen, wie man denen Werte abliest?

>  
> LG Angela
>   


Bezug
                                        
Bezug
Gleichung mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Fr 01.11.2013
Autor: angela.h.b.


> > Es ist
> > [mm]\green{x+2y}+i*\red{(y+2x-1)}=1=\green{1}+\red{0}*i.[/mm]
> >
> > Also müß jeweils das Grüne gleich sein, und das Rote.

>

> Wenn jetzt eine 2 hinter dem Gleichheitszeichen stehen
> würde hieße das, dass mein Realteil=2 ist.

Hallo,

genau.


> Und was muss
> hinter dem Gleichheitszeichen stehen dass mein
> Imaginärteil nicht 0 ist?

Eine komplexe Zahl, etwa

x+2y+(x+2y-1)*i=5+7i.

Daraus folgt

x+2y=5 und
x+2y-1=7.

LG Angela




> Wie sähe so eine Lösung aus?

>

> Es ist also das Ziel auf einer Seite der Gleichung
> Irgendwas (eine komplexe Zahl in der Form x+iy) mit einem i
> und Irgendwas ohne i stehen zu haben. Was ich jetzt nur
> nicht verstehen, wie man denen Werte abliest?
> >
> > LG Angela
> >  

>

Bezug
                                                
Bezug
Gleichung mit komplexen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Fr 01.11.2013
Autor: bavarian16

Alles Klar. Vielen Dank an Alle!

Bezug
                                        
Bezug
Gleichung mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Fr 01.11.2013
Autor: Event_Horizon

Hallo!

Als Zusatz, da das anscheinend nicht ganz klar ist:

Du kannst das ganze ja immer so umrechnen, daß auf einer Seite 0 steht.

$ [mm] \green{x+2y}+i\cdot{}\red{(y+2x-1)}=1=\green{1}+\red{0}\cdot{}i. [/mm] $


$ [mm] \green{x+2y-1}+i\cdot{}\red{(y+2x-1)}=0=\green{0}+\red{0}\cdot{}i. [/mm] $

Denk dran, sowohl das rote als auch das grüne ist rein reell, erst durch die Multiplikation mit dem i kommt das Komplexe ins Spiel.

So kannst du nun immer sagen, daß der realteil (grün) =0 werden muß, und der imaginäre (rot*i) auch.



Aber Achtung: Du hast hier selbst gesagt, daß du die komplexe Zahl z schreiben willst als z=x+iy, wobei x und y reelle Variablen sein sollen. Angenommen, da stünde

$u+2v+i*(v+2u-1)=0$  und u, v sind als komplexe Zahlen, dann funktioniert das nicht mehr. Dann mußt du erstmal u=a+i*b und v=c+i*d ersetzen, mit reellen a, b, c, d, und dann wie gehabt umformen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de