www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Gleichung nach x auflösen
Gleichung nach x auflösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung nach x auflösen: Überprüfung Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 21.01.2013
Autor: Lewser

Aufgabe
Lösen sie folgende Gleichung nach x auf:

[mm] 4^{2x-1}=\bruch{8^{x+1}}{2^{3x-3}} [/mm]

Mein Lösungsansatz:

[mm] 4^{2x-1}=\bruch{8^{x+1}}{2^{3x-3}} [/mm]

[mm] \rightarrow 4^{2x-1}=\bruch{8^{x+1}}{2^{3(x-1)}} [/mm]

[mm] \rightarrow 4^{2x-1}=8^{x+1-(x-1)} [/mm]

[mm] \rightarrow 4^{2x-1}=8^2 [/mm]

[mm] \rightarrow 4^{2x-1}=4^3 [/mm]

[mm] \rightarrow [/mm] 2x-1=3

[mm] \rightarrow [/mm] x=2

Laut Lösung ist dies das richtige Ergebnis. Meine Fragen dazu sind:

Ist das richtig oder ein Zufallstreffer? Außerdem hatte ich einen anderen Rechenweg, der aber zu nichts führt und ich weiss nicht an welcher Stelle ich eine ungültie Operation durchführe:

Als erste Überlegung habe ich alle Exponenten aufgespalten, z.B:

[mm] 8^{x+1}=8^{x}*8^{1} [/mm] usw.

Ich würde meine Versuche dazu gerne posten, allerdings erst, wenn jemand diese/n Lösung/Ansatz überprüft hat.

        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Mo 21.01.2013
Autor: fred97


> Lösen sie folgende Gleichung nach x auf:
>  
> [mm]4^{2x-1}=\bruch{8^{x+1}}{2^{3x-3}}[/mm]
>  Mein Lösungsansatz:
>  
> [mm]4^{2x-1}=\bruch{8^{x+1}}{2^{3x-3}}[/mm]
>  
> [mm]\rightarrow 4^{2x-1}=\bruch{8^{x+1}}{2^{3(x-1)}}[/mm]
>  
> [mm]\rightarrow 4^{2x-1}=8^{x+1-(x-1)}[/mm]
>  
> [mm]\rightarrow 4^{2x-1}=8^2[/mm]
>  
> [mm]\rightarrow 4^{2x-1}=4^3[/mm]
>  
> [mm]\rightarrow[/mm] 2x-1=3
>  
> [mm]\rightarrow[/mm] x=2
>  
> Laut Lösung ist dies das richtige Ergebnis. Meine Fragen
> dazu sind:
>  
> Ist das richtig

Ja, Du hast alles richtig gemacht.

FRED

>  oder ein Zufallstreffer? Außerdem hatte
> ich einen anderen Rechenweg, der aber zu nichts führt und
> ich weiss nicht an welcher Stelle ich eine ungültie
> Operation durchführe:
>  
> Als erste Überlegung habe ich alle Exponenten
> aufgespalten, z.B:
>  
> [mm]8^{x+1}=8^{x}*8^{1}[/mm] usw.
>
> Ich würde meine Versuche dazu gerne posten, allerdings
> erst, wenn jemand diese/n Lösung/Ansatz überprüft hat.


Bezug
                
Bezug
Gleichung nach x auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mo 21.01.2013
Autor: Lewser

Vielen Dank, hier also mein erster Ansatz:

[mm] 4^{2x-1}*2^{3x-3}=8^{x+1} [/mm]

[mm] \rightarrow 4^{2x}*4^{-1}*2^{3x}*2^{-3}=8^{x}*8^{1} [/mm]

[mm] \rightarrow 4^{2x}*2^{3x}=8^{x}*8*4*8 [/mm]

[mm] \rightarrow 16^{x}=256 [/mm]

Hm. Jetzt habe ich es irgendwie doch heraus. Ist dieser Weg ebenfalls zulässig?

Bezug
                        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 21.01.2013
Autor: fred97


> Vielen Dank, hier also mein erster Ansatz:
>  
> [mm]4^{2x-1}*2^{3x-3}=8^{x+1}[/mm]
>  
> [mm]\rightarrow 4^{2x}*4^{-1}*2^{3x}*2^{-3}=8^{x}*8^{1}[/mm]
>  
> [mm]\rightarrow 4^{2x}*2^{3x}=8^{x}*8*4*8[/mm]
>  
> [mm]\rightarrow 16^{x}=256[/mm]
>  
> Hm. Jetzt habe ich es irgendwie doch heraus. Ist dieser Weg
> ebenfalls zulässig?

Ja

FRED


Bezug
                                
Bezug
Gleichung nach x auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Mo 21.01.2013
Autor: Lewser

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de