www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung weiter vereinfachen
Gleichung weiter vereinfachen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung weiter vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 So 02.08.2020
Autor: Rubbish

Aufgabe
[mm] \bruch{3n+x}{m+n}-1=\bruch{nx}{m^2-n^2} [/mm]

vereinfacht bis [mm] x=\bruch{3mn-2n^2-m^2}{2n-m} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe meine ursprüngliche Bruchgleichung bis zu diesem Punkt umgeformt, komme hier aber nicht weiter. Als Ergebnis wird x=m-n angegeben.

        
Bezug
Gleichung weiter vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 02.08.2020
Autor: Gonozal_IX

Hiho,

> [mm]\bruch{3n+x}{m+n}-1=\bruch{nx}{m^2-n^2}[/mm]
>  
> vereinfacht bis [mm]x=\bruch{3mn-2n^2-m^2}{2n-m}[/mm]
> Ich habe meine ursprüngliche Bruchgleichung bis zu diesem
> Punkt umgeformt, komme hier aber nicht weiter. Als Ergebnis
> wird x=m-n angegeben.

Das Ergebnis und der Bruch hätten dir schon einen Hinweis geben können:

Es ist [mm] $3mn-2n^2-m^2 [/mm] = (2n - m)(m-n)$

Gruß,
Gono

Bezug
                
Bezug
Gleichung weiter vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 So 02.08.2020
Autor: Rubbish


> Hiho,
>  
> > [mm]\bruch{3n+x}{m+n}-1=\bruch{nx}{m^2-n^2}[/mm]
>  >  
> > vereinfacht bis [mm]x=\bruch{3mn-2n^2-m^2}{2n-m}[/mm]
>  > Ich habe meine ursprüngliche Bruchgleichung bis zu

> diesem
> > Punkt umgeformt, komme hier aber nicht weiter. Als Ergebnis
> > wird x=m-n angegeben.
>
> Das Ergebnis und der Bruch hätten dir schon einen Hinweis
> geben können:
>  
> Es ist [mm]3mn-2n^2-m^2 = (2n - m)(m-n)[/mm]
>  
> Gruß,
>  Gono

Ja jetzt wo ich das so sehe, fällt es mir wie Schuppen von den Augen.
Ich mache wohl lieber noch ein paar Übungsaufgaben zum Faktorisieren.
Vielen Dank =)


Bezug
        
Bezug
Gleichung weiter vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 So 02.08.2020
Autor: Al-Chwarizmi

Beachte bitte, dass es bei der Lösung nicht genügt, etwa einfach  x = m - n  anzugeben. Es ist wichtig, auch die notwendigen Voraussetzungen anzugeben, hier z.B.:

m [mm] \ne [/mm] n
m [mm] \ne [/mm] -n
m [mm] \ne [/mm] 2 n



Bezug
        
Bezug
Gleichung weiter vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Mo 03.08.2020
Autor: fred97


> [mm]\bruch{3n+x}{m+n}-1=\bruch{nx}{m^2-n^2}[/mm]
>  
> vereinfacht bis [mm]x=\bruch{3mn-2n^2-m^2}{2n-m}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe meine ursprüngliche Bruchgleichung bis zu diesem
> Punkt umgeformt, komme hier aber nicht weiter. Als Ergebnis
> wird x=m-n angegeben.

Es ist ja geklärt, wie x=m-n zustande kommt. Allerdings wurde bei der Herleitung durch 2n-m dividiert. Daher ist der Fall m=2n auch noch zu untersuchen:

Sei also m=2n und n [mm] \ne [/mm] 0. Dann lautet die Gleichung

$ [mm] \bruch{3n+x}{3n}-1=\bruch{nx}{3n^2} [/mm] $.

Somit:

[mm] $1+\bruch{x}{3n}-1=\bruch{x}{3n}.$ [/mm]

In diesem Fall erfüllt als jedes(!) $x [mm] \in \IR$ [/mm] die Gleichung


$ [mm] \bruch{3n+x}{m+n}-1=\bruch{nx}{m^2-n^2} [/mm] $.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de