Gleichungen Lösen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi,
ich habe folgende Aufgabe:
[mm] (x-1)^2 [/mm] (x+2) = 4(x+2)
[mm] (x^2-2x+1)(x+2)=4x+8
[/mm]
[mm] x^2-2x+1=\bruch{4(x+2)}{x+2}
[/mm]
[mm] x^2-2x-3=0
[/mm]
-> p/q Formel...
[mm] x_2=3
[/mm]
[mm] x_3=-1
[/mm]
Jetzt ist im Buch noch [mm] x_1=-2 [/mm] als Lösung angegeben. Die einzige Möglichkeit wie ich mir die erklären kann ist das der Teil (x+2) der oben rausgekürzt wurde =0 gesetzt wurde und dann nach x aufgelöst. Aber da wäre ich von alleine nie drauf gekommen. Woran sehe ich erstmal das die Aufgabe 3 Lösungen hat und ich danach suchen muss? Und ist das richtig den rausgekürzten Teil 0 zu setzten, oder nur zufällig hier richtig. Vielleicht kann da jemand was zu sagen...
Gruß
Andreas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:02 Mi 18.08.2004 | Autor: | andreas |
hi andreas
wenn du $ [mm] (x^2-2x+1)(x+2)=4x+8 [/mm] $ ausmultiplizierst und alles auf eine seite bringst erhälst du - insofern ich mich jetzt nicht verrechnet habe:
[m] x^3 - 7x - 6 = 0 [/m]
also suchst du im prinzip die nullstellen der funktion [m] f(x) = x^3 - 7x - 6 [/m]. der fundamentalsatz der algebra besagt, dass polynome $n$-ten gerades $n$ nullstellen (mit vielfachheit gezählt) in der komplexen ebene haben, also hat $f$ $3$ nullstelle, die nicht notwendigerweise reell sein müssen (ist hier aber der fall, wie du schon gesehen hast).
deine rechnung geht schief, da du im prinzip von der zweiten auf die dritte zeile durch null teilst (da [m]x = -2 [/m] nullstelle ist) und ides dann wegkürzt. du kannst dies ganz einfach so retten, indem du die faktoren [m] (x+2) [/m] beider seiten auf eine seite bringst und ausklammerst, dadurch erhälst du:
[m] (x^2-2x+1)(x+2)=4x+8 [/m]
[m] (x+2)[x^2-2x+1 - 4] = 0 [/m]
und hast somit die erste nullstelle [m] x = -2 [/m] schon gefunden und herausfaktorisiert und musst nun nur noch ein quadratische gleichung - nämlich [m] x^2-2x-3 = 0 [/m] - lösen und das geht ja mit der pq-formel.
also musst du bei gleichungen mit polynomen $n$-ten grades immer mit maximal $n$ nullstellen rechnen.
andreas
|
|
|
|