www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Gleichungen x^6 mod 7 lösen
Gleichungen x^6 mod 7 lösen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen x^6 mod 7 lösen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:22 So 04.05.2008
Autor: original_tom

Aufgabe
Löse die Gleichungen modulo 7:
a) [mm] x^{2} [/mm] = 1
b) [mm] x^{6} [/mm] = 1
c) 3x+5 = 1

HI,

ich hab leider kein Ahnung wie ich solche Gleichungen lösen soll, finde in meinem Skriptum und im Internet keine Ansätze die mir weiterhelfen könnten.
Wäre froh über einen oder einige Tipp(s).

lg tom

        
Bezug
Gleichungen x^6 mod 7 lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 04.05.2008
Autor: Al-Chwarizmi


> Löse die Gleichungen modulo 7:
>  a) [mm]x^{2}[/mm] = 1
>  b) [mm]x^{6}[/mm] = 1
>  c) 3x+5 = 1
>  HI,
>  
> ich hab leider kein Ahnung wie ich solche Gleichungen lösen
> soll, finde in meinem Skriptum und im Internet keine
> Ansätze die mir weiterhelfen könnten.
>  Wäre froh über einen oder einige Tipp(s).
> lg tom

Hi tom,

Da 7 eine Primzahl ist, kann man modulo 7 prima rechnen.
Alle 4 Grundoperationen ( +,  - , * , / ) sind eindeutig definiert
und damit auch Potenzen wie   [mm] x^2 [/mm]  oder  [mm] x^6 [/mm] .

Ich nehme andere Beispiele:

d) 2x+3 = 2

das ist gleichwertig mit 2x+3=9  (weil 9 mod 7 = 2)
beidseitig 3 subtrahieren ergibt 2x=6
halbiert:   x=3 .  Dass die Lösung eindeutig ist,
kann man auch durch Einsetzenaller 7 möglichen
x-Werte  0,1,2,3,4,5,6 und ausrechnen von (2x+3) mod 7
überprüfen.

e) [mm]x^{2}[/mm] = 5

einfach alle Quadrate mod 7 tabellieren!

[mm]x[/mm]       0   1   2   3   4   5   6

[mm] x^2 [/mm]       0   1   4   2   2   4   1

[mm] x^2 [/mm] = 5 ist also offenbar modulo 7 unmöglich !  Lösungsmenge = {}


Gruß    al-Ch.







Bezug
                
Bezug
Gleichungen x^6 mod 7 lösen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:51 So 04.05.2008
Autor: original_tom

Hallo, danke für die schnelle Antwort.

eine Frage zu [mm] x^{6} [/mm] = 1 mod 7 hätt ich noch. Diese Beispiel könnt ich dann auch über den Satz von Euler Fermat rechnen da das für alle x wo ggT(7,x) =1 ist mit [mm] x^{phi(7)} [/mm] = 1 mod 7 ergibt?

lg tom

Bezug
                        
Bezug
Gleichungen x^6 mod 7 lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 So 04.05.2008
Autor: MathePower

Hallo original_tom,

> Hallo, danke für die schnelle Antwort.
>  
> eine Frage zu [mm]x^{6}[/mm] = 1 mod 7 hätt ich noch. Diese Beispiel
> könnt ich dann auch über den Satz von Euler Fermat rechnen
> da das für alle x wo ggT(7,x) =1 ist mit [mm]x^{phi(7)}[/mm] = 1 mod
> 7 ergibt?

Und [mm]\phi\left(7\right)[/mm] ist 7-1=6.

Demach gilt das für alle Zahlen mit ggT(7,x)=1.

>  
> lg tom

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de