www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichungssystem m. kompl.Zahl
Gleichungssystem m. kompl.Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem m. kompl.Zahl: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 14.08.2012
Autor: DonC

Aufgabe
Bestimmen Sie alle Lösungen des Gleichungssystems
[mm] $z\tilde{z}=2$ [/mm]
[mm] |z-\tilde{z}|+|z+\tilde{z}|=4 [/mm] .

Hallo allerseits,
ich habe ein Problem bei dieser Aufgabe, und zwar mit dem Ansatz $ z=a+bi $ bzw. [mm] \tilde{z}=a-bi, [/mm] komme ich bei der zweiten Gleichung auf "$|a+bi-a+bi|+|a+bi+a+bi|=4$", was zusammengefasst $|2bi|+|2a|=4 $ ergibt.
Somit habe ich folgendes GLS:
[mm] $a^{2}+b^{2}=4 [/mm]  (I)$
$|2bi|+|2a|=4         (II)$

Mit $|z|= [mm] \wurzel{a^{2}+b^{2}}$ [/mm] erhalte ich nur zwei Ergebnisse.
Wenn ich deshalb versuche das GLS durch Anwendung der Fallunterscheidung aufzulösen so erhalte ich kein richtiges Ergebnis. Für a<0 und b>0 z.B., erhalte ich nach Gleichung zwei "a=b-2i", das in die Erste eingesetz ergibt [mm] "-b^{2}+b^{2}-2bi+4=2" [/mm] und daraus folgt [mm] $b=-\frac{1}{2}i, a=-\frac{3}{2}. [/mm] Demnach müsste ich jedoch für b die imaginäre Einheit selber einsetzen, was sicherlich nicht richtig sein kann. Kann mich jemand auf meinen Denkfehler hinweisen?
Das wäre sehr nett.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Mfg DonC

        
Bezug
Gleichungssystem m. kompl.Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 14.08.2012
Autor: Diophant

Hallo,

du solltest dir einmal klarmachen, wie die beiden Gleichungen für sich in der Gaußschen Ebene jewils aussehen. Die Lösungen müssen ja genau die Elemente der Schnittmenge der beiden Figuren sein, die durch die beiden Gleichungen beschrieben sind. Zu deiner Kontrolle: es muss vier solcher Lösungen geben, sie liegen hochgradig symmetrisch.

Dein eigentlicher Denkfehler liegt darin, dass natürlich

|2bi|=|2b|=2|b| ist, da der Betrag der imaginären Einheit gleich 1 ist.

Hilft dir das schon weiter?


Gruß, Diophant

Bezug
                
Bezug
Gleichungssystem m. kompl.Zahl: krz Antwort
Status: (Frage) beantwortet Status 
Datum: 18:30 Di 14.08.2012
Autor: DonC

Hallo Diophant,
Ich danke für die schnelle Antwort. Dein Hinweis hat mir sehr weitergeholfen. Somit habe ich in der Gaußschen Ebene ein Kreis und vier Linien, die den Kreis jeweils tangieren.

MfG DonC

Bezug
                        
Bezug
Gleichungssystem m. kompl.Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Di 14.08.2012
Autor: Diophant

Hallo DonC

hab leider gerade keine Zeit mehr für ein Bild. Der Kreis ist richtig, es ist ein Kreis um 0 mit dem Radius r=2. Die zweite Gleichung beschreibt ein Quadrat, dessen Eckpunkte von innen an den Kreis stoßen, und zwar jeweils in dessen Schnittpunkten mit den beiden Achsen.

Man kann das auch rechnerisch relativ leicht einsehen, indem man mal die negativen Lösungen einen Moment vergisst und das Gleichungssystem

I:   [mm] x^2+y^2=4 [/mm]
II:      x+y=2

betrachtet. Dieses System besitzt zwei Lösungsen, die beiden anderen kann man entweder mit der Symmterie der beiden Gleichungen (Kommutatitivät der Addition) oder aber geometrisch oder durch Nachrechnen begründet.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de