www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gleichungsyst. mit Komponente
Gleichungsyst. mit Komponente < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungsyst. mit Komponente: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 30.08.2006
Autor: Dnake

Aufgabe
Für welchen Wert von [mm] \lambda [/mm] hat das folgende lineare GS nichttriviale Lösungen und wie lauten diese Lösungen.
x + 3y + z = 0
2x+ y - 3z=0
3x + 3y [mm] +\lambda [/mm] z =0

und wie lauten diese Lösungen.

Hallo,

ich habe für [mm] \lambda \bruch{9}{5} [/mm] heraus.

Stimmt das?



        
Bezug
Gleichungsyst. mit Komponente: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mi 30.08.2006
Autor: EvenSteven


>  Hallo,
>  
> ich habe für [mm]\lambda = \bruch{9}{5}[/mm] heraus.
>
> Stimmt das?
>  

Nein, ich kriege [mm]\lambda = -3[/mm]. Mit der Matrix-Schreibweise ist das besser erklärbar. Sicher kennst du das schon, oder?

Sei
[mm] A = \pmat{ 1 & 3 & 1 \\ 2 & 1 & -3 \\ 3 & 3 & \lambda} [/mm]
Dann ist
[mm] A* \vektor{x \\ y \\z} = \vektor{0 \\ 0 \\ 0} [/mm]
dein Gleichungssystem. Soll nun ein Vektor [mm]0 \not= u \in \IR^3[/mm] existieren so das A*u=0 so bedeutet das, dass Ker(A) nicht trivial ist. Aber das ist äquivalent zu det(A) = 0.

Gruss

EvenSteven




Bezug
                
Bezug
Gleichungsyst. mit Komponente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 31.08.2006
Autor: Dnake

Hallo,

ja, hatte mich verrechnet, habe jetzt auch -3 heraus.
muss ich die -3 jetzt einfach in der letzten Zeile einsetzen und das GS dann normal auflösen?



Bezug
                        
Bezug
Gleichungsyst. mit Komponente: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Do 31.08.2006
Autor: EvenSteven

Huhu

> ja, hatte mich verrechnet, habe jetzt auch -3 heraus.
> muss ich die -3 jetzt einfach in der letzten Zeile
> einsetzen und das GS dann normal auflösen?
>  

Jein. Wenn du mit dem Gausschen Algorithmus da durch gehst, kriegst du am Schluss eine Zeile mit lauter Nullen. Das bedeutet du kannst die z-Komponente (falls du die letzte Zeile mit 0en hast) frei wählen also
[mm]z=\mu \in \IR[/mm] beliebig. Die x- und y-Werte folgen dann - in Abhängigkeit des gewählten [mm] \mu [/mm] natürlich. D.h. du kriegst eine ganze Gerade voll Lösungen.

Bye

EvenSteven



Bezug
                                
Bezug
Gleichungsyst. mit Komponente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 31.08.2006
Autor: Dnake

Hallo,

ich hab dann z=u raus, y= -u und x=2u

korrekt?

Danke für die Hilfe!


Bezug
                                        
Bezug
Gleichungsyst. mit Komponente: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 31.08.2006
Autor: EvenSteven


> Hallo,
>  
> ich hab dann z=u raus, y= -u und x=2u
>  
> korrekt?

[prost] Das ist korrekt!

>  
> Danke für die Hilfe!
>  

Bitte, gern geschehen :)

Bye

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de