www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Gleichverteilung [0,1]
Gleichverteilung [0,1] < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichverteilung [0,1]: Hilfe bei Transformation
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:44 Mi 22.04.2009
Autor: ecko

Also Sei U eine zufällige Größe, gleichverteilt auf [0,1]

Nun suchen wir die Verteilungsfunktion und die Dichte für die zufällige Größe Z, mit:
                      Z := [mm] \bruch{U}{1+U} [/mm]

Ich habe eine ähnliche Aufgabe gelöst, bei dieser war Z=U²

Ich habe dann einfach aus dem t ein [mm] \wurzel[]{t} [/mm] gemacht und einfach
                            [mm] \IP(Z\le\wurzel[]{t}) [/mm]
berechnet, da ich aus U² die wurzel ziehen musste, wie funtioniert das in meinem Fall?

        
Bezug
Gleichverteilung [0,1]: Lösungsansatz:
Status: (Frage) beantwortet Status 
Datum: 16:54 Mi 22.04.2009
Autor: ecko

Ich hab jetzt mal ne Idee, könnt ja mal sagen obs richtig ist:

[mm] \IP(U\le [/mm] t) [mm] =\begin{cases} t, & \mbox{für } t\in[0,1] \\ 0, & \mbox{für } t\le 0\\1, & \mbox{für } t> 1 \end{cases} [/mm]

Nun Sei [mm] F(t)=\IP(Z\le t)=\IP(\bruch{U}{1+U}\le t)=\IP(U\le \bruch{t}{1-t})=\begin{cases} \bruch{t}{1-t}, & \mbox{für } t\in[0,1] \\ 0, & \mbox{für } t\le 0\\1, & \mbox{für } t> 1 \end{cases} [/mm]

Also hat mein Z eine Verteilungsdichte von:
[mm] F'(t)=\begin{cases} \bruch{1}{(t-1)²}, & \mbox{für } t\in[0,1] \\ 0, & \mbox{für } t\not\in[0,1] \end{cases} [/mm]

Jetzt lässt sich mein Ertwartungswert so errechnen:
EZ = [mm] \integral_{-\infty}^{\infty}{t*F'(t) dt}=\integral_{-\infty}^{\infty}{t*\bruch{1}{(t-1)²} dt}=\integral_{0}^{1}{\bruch{t}{(t-1)²} dt} [/mm]

Ist das soweit richtig? Kann mir jemand sagen, wie ich das Integral löse, hab schon alles probiert, komm hier nicht weiter.

Bezug
                
Bezug
Gleichverteilung [0,1]: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 22.04.2009
Autor: luis52


> Also hat mein Z eine Verteilungsdichte von:
>  [mm]F'(t)=\begin{cases} \bruch{1}{(t-1)²}, & \mbox{für } t\in[0,1] \\ 0, & \mbox{für } t\not\in[0,1] \end{cases}[/mm]

Fast. Du musst bedenken, dass gilt [mm] $0\le u/(1+u)\le1/2$. [/mm]

>  
> Jetzt lässt sich mein Ertwartungswert so errechnen:
>  EZ = [mm]\integral_{-\infty}^{\infty}{t*F'(t) dt}=\integral_{-\infty}^{\infty}{t*\bruch{1}{(t-1)²} dt}=\integral_{0}^{1}{\bruch{t}{(t-1)²} dt}[/mm]

[mm] $\int\bruch{t}{(t-1)²} dt=\frac{1}{1-t}+\ln(t-1)$. [/mm]

vg Luis



Bezug
                        
Bezug
Gleichverteilung [0,1]: 1/2 ?
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 22.04.2009
Autor: ecko

Kannst du mir erklären wie du drauf kommst das mein t jetzt kleiner sein muss als 1/2 ?????

Bezug
                                
Bezug
Gleichverteilung [0,1]: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 22.04.2009
Autor: luis52


> Kannst du mir erklären wie du drauf kommst das mein t jetzt
> kleiner sein muss als 1/2 ?????

[mm] $u/(1+u)\le 1/2\iff 2u\le 1+u\iff u\le [/mm] 1$.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de