www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Gleitkommazahl
Gleitkommazahl < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitkommazahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 11.08.2011
Autor: lzaman

Aufgabe
Die Dualzahl 1100100110101100 soll in Dezimaldarstellung gebracht werden.

mit 1.Bit : VZ

Exponent hat die Wortlänge 6
und die Mantisse die Wortlänge 8


Guten Abend, ich komme nicht auf die Lösung -13,375.

VZ: 1 ist klar also - als Vorzeichen.

Exponent ist dann 100100
und die Mantisse 11010110

Wie verwende ich denn nun genau die Formel: [mm]\pm Mantisse \cdot Basis ^{\pm Exponent}[/mm] ?




        
Bezug
Gleitkommazahl: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Do 11.08.2011
Autor: felixf

Moin!

> Die Dualzahl 1100100110101100 soll in Dezimaldarstellung
> gebracht werden.
>  
> mit 1.Bit : VZ
>  
> Exponent hat die Wortlänge 6
>  und die Mantisse die Wortlänge 8
>  
> Guten Abend, ich komme nicht auf die Lösung -13,375.
>  
> VZ: 1 ist klar also - als Vorzeichen.
>  
> Exponent ist dann 100100
>  und die Mantisse 11010110

Die Mantisse entspricht im Dezimalsystem ja 214. Und offenbar ist $-214 [mm] \cdot 2^n [/mm] = -13.375$ genau dann, wenn $n = -4 ist. Also muss der Exponent -4 sein.

Zumindest falls die Mantisse wirklich als natuerliche Zahl interpretiert wird. Man kann sie auch als 1.1010110 auffassen, dann muesste $n = 3$ sein.

Beide Moeglichkeiten passen allerdings nicht wirklich zur Binaerdarstellung 100100. Irgendwas scheint hier nicht zu stimmen, oder ihr verwendet eine recht komische Definition von Gleitkommazahlen.

> Wie verwende ich denn nun genau die Formel: [mm]\pm Mantisse \cdot Basis ^{\pm Exponent}[/mm]
> ?

LG Felix


Bezug
                
Bezug
Gleitkommazahl: Konvention
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 11.08.2011
Autor: lzaman


Hi, wir verwenden die Konvention (ohne Hidden Bit)

V: Vorzeichen
E:Exponent als Charakteristik
M:Mantisse

V E E E E E E M M M M M M M M

Es muss irgendwie stimmen. Wir haben leider auch keine Übungen dazu gemacht.


Bezug
                        
Bezug
Gleitkommazahl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Do 11.08.2011
Autor: felixf

Moin,

> Hi, wir verwenden die Konvention (ohne Hidden Bit)
>
> V: Vorzeichen
>  E:Exponent als Charakteristik

ah, hier das passende Stichwort: Charakteristik. Ich vermute mal, der Bias ist 100000? Dann ist der Exponent +4.

>  M:Mantisse

Vielleicht wird die Mantisse als 0.M interpretiert, also 0.11010110 in diesem Fall. Dann ist $-0.M [mm] \cdot 2^{+4} [/mm] = -13.375$, da 13 = 1101 und 0.375 = 0.0110.

LG Felix


Bezug
                                
Bezug
Gleitkommazahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Do 11.08.2011
Autor: lzaman

Ja, danke genauso ist es. Die Mantisse wird als 0.M interpretiert, da ohne Hidden Bit.

Der Exponent berechnet sich dann mit

[mm]100100_2-100000_2=100_2=4_{10}[/mm]

Danke nochmals


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de