www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Globale Extrema
Globale Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mo 01.07.2013
Autor: Joker08

Aufgabe
Untersuchen Sie folgende Funktion auf lokale und globale Extremstellen und geben sie an, aufgrund welcher Überlegung Sie die Existenz bzw. Nichtexistenz von Extremstellen gefolgert haben.

[mm] f:\IR^2 \to \IR [/mm] mit [mm] f(x,y):=\bruch{1+x}{1+x^2+y^2} [/mm]

Also ich habe die funktion bereits auf Extremstellen geprüft und rausgefunden, dass sie zwei lokale Extrempunkte hat.

Sie hat ein lokales Minimum bei [mm] (-1-\wurzel{2},0) [/mm] und ein lokales Maximum bei [mm] (\wurzel{2}-1,0). [/mm]

Jetzt würde ich gerne wissen, ob dies auch globale Extremstellen sind.

Nun ist:

[mm] f(\wurzel{2}-1,0)=\bruch{1}{2}+\bruch{1}{\wurzel{2}} [/mm]

[mm] f(-1-\wurzel{2},0)=\bruch{1}{2}-\bruch{1}{\wurzel{2}} [/mm]

Ich wollte das ganze nun vll mit dem verhalten im undendlichen prüfen.

Nun ist:

[mm] \limes_{x \rightarrow \pm \infty} \bruch{1+x}{1+x^2+y^2} [/mm] = 0

[mm] \limes_{y \rightarrow \pm \infty} \bruch{1+x}{1+x^2+y^2} [/mm] = 0

Das reicht allerdings sicher noch nicht um zu begründen, dass es auch globale Extrema sind oder ?

Wie kann ich bei dieser funktion zeigen, dass es auch globale Extrempunkte sind ?


        
Bezug
Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Mi 03.07.2013
Autor: Richie1401

Hallo, da sich noch niemand hier gemeldet habe, bringe ich mal eine reine Idee ein:

Offensichtlich klingt die Funktion f auf Null ab. Und das in jeder Richtung, denn sei [mm] x\in\IR [/mm] fest und betrachte den Grenzwert [mm] \lim_{y\to\pm\infty}, [/mm] dann wird f=0. Äquivalent mit umgedrehten Variablen (y fest, [mm] x\to\infty) [/mm]

Damit ist das ganze also asymptotisch. => Deine lokalen Extrema sind auch global.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de