www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Globale Extrema
Globale Extrema < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 01.07.2013
Autor: poeddl

Aufgabe
Bestimme globale Extrema

Hallo,

kann mir von euch eventuell jemand die allgemeine Herangehensweise erläutern, wie ich globale Extrema finde?

Lokale finde ich ja mit der ersten Ableitung, welche ich null setze.
Die gefundenen Extremwerte setze ich dann in die zweite Ableitung ein, um zu sehen, ob es sich um einen lokalen Hoch- oder Tiefpunkt handelt.

Wie finde ich nun aber globale Extremstellen?
Und worauf muss ich achten, wenn der Definitionsbereich ein offenes / halboffenes / geschlossenes Intervall ist?

Ich hoffe, irgendjemand erklärt sich bereit mir das zu erklären.
Das wäre wirklich super nett!

Vielen Dank für eure Hilfe

        
Bezug
Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mo 01.07.2013
Autor: Thomas_Aut

Hallo

> Bestimme globale Extrema
>  Hallo,
>  
> kann mir von euch eventuell jemand die allgemeine
> Herangehensweise erläutern, wie ich globale Extrema
> finde?
>  
> Lokale finde ich ja mit der ersten Ableitung, welche ich
> null setze.

Ja falls du dich auf einer offenen Menge bewegst - sonst müsstest du mögliche Randextrema auch betrachten.

>  Die gefundenen Extremwerte setze ich dann in die zweite
> Ableitung ein, um zu sehen, ob es sich um einen lokalen
> Hoch- oder Tiefpunkt handelt.

Ja das stimmt - sofern du eindimensionale Funktionen behandelst. Ansonsten würdest du die Hesse Matrix bilden und dich aufgrund ihrer Definitheit von Min, Max überzeugen.

>  
> Wie finde ich nun aber globale Extremstellen?

Es gibt hierfür nicht immer Kochrezepte - das kommt ganz auf deine Funktion an. Eine Möglichkeit wäre zz dass zb f(x) [mm] \le [/mm] Max [mm] \ge [/mm] Min ist. und zwar für alle x.

> Und worauf muss ich achten, wenn der Definitionsbereich ein
> offenes / halboffenes / geschlossenes Intervall ist?

Hab ich oben schon erklärt:
AUf einem offenen Intervall sind die Extrema tatsächlich Nullstellen der ersten Ableitung. Auf einem abgeschlossenen musst du die Randpunkte des Intervalls extra untersuchen. Auf einem halboffenen musst du demnach einen Randpunkt extra untersuchen.

>  
> Ich hoffe, irgendjemand erklärt sich bereit mir das zu
> erklären.
>  Das wäre wirklich super nett!
>  
> Vielen Dank für eure Hilfe

Gruß

Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de