www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Glücksautomat
Glücksautomat < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Glücksautomat: Wahrscheinlichkeit
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 13.02.2008
Autor: Sunnybaer

Ein spieler wirft eine münze. bei einem kopfwurf dreht er anschließend einmal rad a, bei zahl wird rad b gedreht. der einsatz beträgt pro spiel 2 euro. Die gedrehte Zahl ist die Auszahlung.

RadA besteht aus 6 Teilen> 2x 5euro, 3x0euro und 1x3euro
RadB besteht aus 4 Teilen > 2x0Euro, 1x3euro und 1x 5euro

a) Wie groß ist die wahrscheinlichkeit, 5 euro ausgezahlt zu bekommen?
b) mit welchem durchschnittlichen gewinn/verlust pro spiel ist zu rechnen?
c) Wie oft muss man spielen, damit mit mind. 99 % Wahrscheinlichkeit mind. einmal 5 euro ausgezahlt werden?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also bei a liegt doch die wahrscheinlichkeit für rad a bei 2/6 und für rad b bei 1/4 fasst man das noch zusammen?

        
Bezug
Glücksautomat: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:56 Mi 13.02.2008
Autor: Roadrunner

Hallo Sunnybär,

[willkommenmr] !!


Du musst ja noch berücksichtigen, dass die Wahrscheinlichkeit für [mm] $\text{Rad A}$ [/mm] bzw. [mm] $\text{Rad B}$ [/mm] jeweils [mm] $\bruch{1}{2}$ [/mm] beträgt.

Für die Gesamtwahrscheinlichkeit musst Du dann die Einzelwahrscheinlichkeiten addieren:

[mm] $$P(\text{Gewinn = 5 Euro}) [/mm] \ = \ [mm] \bruch{1}{2}*\bruch{2}{6}+\bruch{1}{2}*\bruch{1}{4} [/mm] \ = \ [mm] \bruch{1}{6}+\bruch{1}{8} [/mm] \ = \ ...$$

Für Aufgabe b.) solltest Du Dir vielleicht ein Baumdiagramm aufzeichnen.
Oder Du berechnest analog zu Aufgabe a.) die Einzelwahrscheinlichkeiten für die jeweiligen Gewinnstufen.

Zu Aufgabe c.) ... wie groß ist die Wahrscheinlichkeit, einen anderen Gewinn als 5€ zu erhalten? Wie oft muss ich spielen, bis die Wahrscheinlichkeit $< \ [mm] 1\%$ [/mm] beträgt?


Gruß vom
Roadrunner


Bezug
                
Bezug
Glücksautomat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 13.02.2008
Autor: Sunnybaer

Die Wahrscheinlichkeit 5 euro zu gewinnen liegt bei 7/24 analog gerechnet die für 3 euro bei 5/24. kann man dann b auch so rechnen:

5x 7/24 + 3x 5/24 - 2Euro (Preis für das Spiel) = 0,083 Euro ist der Gewinn je Spiel

Bezug
                        
Bezug
Glücksautomat: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 13.02.2008
Autor: Roadrunner

Hallo Sunnybär!


[daumenhoch] Das sieht gut aus.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Glücksautomat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 13.02.2008
Autor: Sunnybaer

Gibt es für c einen bestimmten Ansatz? Ich habe da garkein Idee...

Bezug
                                        
Bezug
Glücksautomat: siehe oben
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 13.02.2008
Autor: Roadrunner

Hallo Sunnybär!


Die Wahrscheinlichkeit, nicht 5 € zu gewinnen beträgt ja: [mm] $1-\bruch{7}{24} [/mm] \ = \ [mm] \bruch{17}{24}$ [/mm] .

Wie oft muss ich nun diese Wahrscheinlichkeit multiplizieren, um die Wahrscheinlichkeit von [mm] $100\%-99\% [/mm] \ = \ [mm] 1\% [/mm] \ = \ 0.01$ zu unterschreiten:

[mm] $$\left(\bruch{17}{24}\right)^n [/mm] \ [mm] \le [/mm] \ 0.01$$

Gruß vom
Roadrunner


Bezug
                                                
Bezug
Glücksautomat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mi 13.02.2008
Autor: Sunnybaer

Wenn ich das dann richtig verstanden habe, dann muss ich doch in etwa 140 mal Spielen oder? 99 :  17/24= 139.76 oder?

Vielen Dank schon mal für die Hilfe

Bezug
                                                        
Bezug
Glücksautomat: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 13.02.2008
Autor: M.Rex

Hallo

Nicht teilen, Logarithmieren führt hier zum n.

Marius

Bezug
                                                                
Bezug
Glücksautomat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 13.02.2008
Autor: Sunnybaer

und logarithmieren funktionierte  wie? ;-)

Bezug
                                                                        
Bezug
Glücksautomat: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 13.02.2008
Autor: M.Rex

Hallo

Das solltest du aber in der 13 hinbekommen...

[mm] \left(\bruch{17}{24}\right)^{n}=0.01 [/mm]
[mm] \gdw\log_{\bruch{17}{24}}(0,01)=n [/mm]

Marius

Bezug
                                                                        
Bezug
Glücksautomat: auch mit anderem Logarithmus
Status: (Antwort) fertig Status 
Datum: 17:09 Mi 13.02.2008
Autor: Roadrunner

Hallo Sunnybär!


Du kommst hier mit jedem beliebigen MBLogarithmus zum Ziel, z.B. mit der Basis $e_$ oder $10_$ :

[mm] $$\left(\bruch{17}{24}\right)^n [/mm] \ = \ 0.01$$
[mm] $$\log_{10}\left[\left(\bruch{17}{24}\right)^n\right] [/mm] \ = \ [mm] \log_{10}(0.01)$$ [/mm]
[mm] $$n*\log_{10}\left(\bruch{17}{24}\right) [/mm] \ = \ [mm] \log_{10}(0.01)$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de