www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Goniometrische Gleichung
Goniometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Fr 14.08.2009
Autor: Reimi

Aufgabe
Bei folgenden Aufgaben sind alle Lösungen der gegebenen gioniometrischen Gleichungen zu bestimmen:

2sin^2x + 4cos^2x =3  G=[0°,360°[

Hi
Hoffentlich bin ich hier im richtigen Unterforum :S

Ich komme einfach gleich zur Sache, bin grad am Lernen für meine Aufholprüfung.

Kann mir jmd. den Lösungsweg zeigen bzw. erklären?


Wäre sehr Dankbar!
mfg Reimar

(brauche Lösung ziemlich bald, deswegen in 2 Foren ^^")
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Goniometrische-Gleichung-59

        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Fr 14.08.2009
Autor: kuemmelsche

Hallo,

ich denke mal es hilft am Anfang ersteinmal die Gleichung umzuschreiben:

[mm] $2(sin^{2}x+cos^{2}x)+2cos^{2}x=3$ [/mm]

Jetz noch trigonometrischen Pythagoras, und dann biste fast fertig!

lg Kai

Bezug
                
Bezug
Goniometrische Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:34 Fr 14.08.2009
Autor: Reimi

Danke erstmal für die schnelle Antwort!

Stimmt dann meine Lösung: 60°, 120°, 180°, 240°, 300°...?

und wie ginge ich bei folgender vor?

sinx-1 = cosx - (sinx/cosx)

Bezug
                        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Fr 14.08.2009
Autor: angela.h.b.


> Danke erstmal für die schnelle Antwort!
>  
> Stimmt dann meine Lösung: 60°, 120°, 180°, 240°,
> 300°...?

Hallo,

[willkommenmr].

Diese Frage kannst Du Dir beantworten, indem Du die Probe machst.

>  
> und wie ginge ich bei folgender vor?

> sinx-1 = cosx - (sinx/cosx)

Eine Möglichkeit wäre, daß Du ein bißchen was mit den Additionstheoremen versuchst.

Die nächste: man drückt jeden sin durch cos aus (Achtung, das ist je nach x verschieden), und versucht so auf einen grünen Zweig zu kommen.

Oder, was mir am bequemsten vorkommt und gut geklappt hat, man quadriert erstmal, nutzt dann den trig. Pythagaras und schaut, was sich sonst noch so zu den eigenen Gunsten ergibt.

Du mußt damit rechnen, nicht beim ersten Vercuh zum Ziel zu kommen. Klappt das eine nicht, probiert man halt was anderes.

Gruß v. Angela









Bezug
                                
Bezug
Goniometrische Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 14.08.2009
Autor: Reimi

Aufgabe
2sin²x +4 cos²x=3

bzw.

sinx-1 = cosx -  (sinx / cosx)

für nr1 habe ich folgende lösung
2sin²x +4 -4sin²x = 3
-2sin²x =-1 |⋅ -1
2sin²x =1 | :2
sin²x = 0.5 | Wurzel
sinx =0.7071 | sin ^-1
x1= 45°
x2= 90°
x3= 135°
...
x7= 270°
x8= 315°
würde das stimmen?

wie würdet ihr denn die 2te lösen?

danke schon mal im voraus

Bezug
                                        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Fr 14.08.2009
Autor: xPae

Hallo,


Deine Ergebnisse stimmen nicht zu 100%.

45° ist eine Lösung 135° auch , 90° nicht , 270° auch nicht.
Geanuer: Nur jedes Zweite , also das erste , das dritte ... stimmen. Überlege warum das so ist! Du kannst das auch selber mit dem TR überprüfen. (Überprüfe 315°)

Ich stelle Dir hier nochmal den Lösungsweg vor der am Anfang gegeben wurde:

[mm] 2*(sin^{2}(x)+cos^{2}(x))+2*cos^{2}(x) [/mm] = 3
[mm] 2+2*cos^{2}(x) [/mm] = 3
[mm] cos(x)=\wurzel{\bruch{1}{2}} [/mm]
[mm] x\approx\pm0,7071 [/mm]

[mm] =>x_{1}=45 [/mm]
[mm] =>x_{2}=135 [/mm]
[mm] =>x_{3}=315 [/mm]

Die Begründung findest du vllt auch in einer Zeichnung von der Sinus und Cosinus Kurve! Was ist besonders an den [mm] x_{1,2,3}-Werte [/mm] von Sinus und Cosinus.

Zur zweiten Aufgabe siehe Angelas Tips. Und bedenke immer:

[mm] cos^{2}(x)+sin^{2}(x)=1 [/mm]

bei solchen aufgaben geht sehr viel über probieren, wie schon gesagt wurde.

Also probiere weiter aus und stelle deine Lösungswege vor.

Lg xPae

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de