www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient=0
Gradient=0 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient=0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 24.01.2009
Autor: Englein89

Hallo,

ich soll bestimmen für welche Werte der Gradient von f(x,y) =0 ist.

Ich habe bereits die ersten Ableitungen:

nach x: [mm] 2x(1-2x^2-2y^2)=0 [/mm]
nach y: [mm] -2y(1+2x^2+2y^2)=0 [/mm]

Ich weiß ja, dass x und x jeweils =0 sein müssten, aber das sind doch nicht die einzigen Ergebnisse.

[mm] 1-2x^2-2y^2=0 [/mm] für [mm] -2x^2-2y^2=-1 [/mm] und
[mm] 1+2x^2+2y^2=0 [/mm] für [mm] 2x^2+2y^2=-1 [/mm]

aber wie bekomme ich nun noch mehr Ergebnisse?


        
Bezug
Gradient=0: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Sa 24.01.2009
Autor: XPatrickX


> Hallo,

>
Hey!
  

> ich soll bestimmen für welche Werte der Gradient von f(x,y)
> =0 ist.
>  
> Ich habe bereits die ersten Ableitungen:
>  
> nach x: [mm]2x(1-2x^2-2y^2)=0[/mm]
>  nach y: [mm]-2y(1+2x^2+2y^2)=0[/mm]

Da ich die Ursprungsfunktion nicht kenne, kann ich das nicht überprüfen.

Sei jetzt
$a:=2x$
[mm] $b:=1-2x^2-2y^2$ [/mm]
$c:=-2y$
[mm] $d:=1+2x^2+2y^2$ [/mm]

Dann hat dein Gradient folgende Form:

[mm] $(a\cdot [/mm] b , c [mm] \cdot [/mm] d)$

Nun gehe doch mal alle Möglichkeiten durch, sodass der Gradient Null wird:
$a=0 [mm] \wedge [/mm] c=0$
$a=0 [mm] \wedge [/mm] d=0$
$b=0 [mm] \wedge [/mm] c=0$
$b=0 [mm] \wedge [/mm] d=0$

Damit kannst du dann deine x und y konkret ausrechnen.



>  
> Ich weiß ja, dass x und x jeweils =0 sein müssten, aber das
> sind doch nicht die einzigen Ergebnisse.
>  
> [mm]1-2x^2-2y^2=0[/mm] für [mm]-2x^2-2y^2=-1[/mm] und
>  [mm]1+2x^2+2y^2=0[/mm] für [mm]2x^2+2y^2=-1[/mm]
>  
> aber wie bekomme ich nun noch mehr Ergebnisse?
>  

Gruß Patrick

Bezug
                
Bezug
Gradient=0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 24.01.2009
Autor: Englein89

Ich verstehe diese Vorgehensweise leider nicht. Gerade diese langen Ausdrücke sind ja mein Problem, inwiefern löst sich das nun auf?

Bezug
                        
Bezug
Gradient=0: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 24.01.2009
Autor: schachuzipus

Hallo Englein,

nun, du kannst das doch direkt angehen.

Mal angenommen, deine partiellen Ableitungen stimmen.

Dann muss nun gelten:

(I) [mm] $2x\cdot{}(1-2x^2-2y^2)=0$ [/mm]

(II) [mm] $-2y\cdot{}(1+2x^2+2y^2)=0$ [/mm]

Nun schaue mal scharf auf den 2.Ausdruck. In der Klammer stehen zwei Quadrate und +1, das ist also immer >0

Dh., dass (II) nur dann =0 ist, wenn $y=0$ ist

Du hast also $y=0$ als "Generalbedingung", alle stationären Punkte werden die y-Koordinate 0 haben müssen ...

Damit gehe in (I)

Wann ist [mm] $2x\cdot{}(1-2x^2-2\cdot{}0^2)=2x\cdot{}(1-2x^2)=0$ [/mm]

Das kriegst du hin ...

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de