www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Gramsche Determinante
Gramsche Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gramsche Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Di 13.05.2008
Autor: briddi

Aufgabe
gegeben ist folgende Formel für die Gramsche Determinante: Für A [mm] \in [/mm] M(mxn,K) mit m [mm] \le [/mm] n gilt

[mm] det AA^{t} = \summe_{1\le k_{1}< k_{2}...\le{n}} det A^{k_{1}...k_{m}} [/mm]

ich soll nun beispielsweise die determinante einer 2x1 Matrix berechnen können. Ich weiß nur irgendwie nicht, wie man das machen soll.
Kann mir jemand ein Beispiel geben?

und wieso soll das für eine 2x1 matrix gehen, 2 ist doch größer als 1,da gilt die formel doch gar nicht,oder?

        
Bezug
Gramsche Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 13.05.2008
Autor: Merle23

[mm] A*A^T [/mm] ist quadratisch.

Bezug
                
Bezug
Gramsche Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 13.05.2008
Autor: briddi

das ist mir auch klar,aber man soll mit dieser formel irgendwie die determinante einer nicht-quadratischen matrix ausrechnen können,

ok,falls nicht,wie wäre es aber wenn ich zb für a die 1x2 matrix (2 3) einsetze, was bedeutet die rechte seite, eigentlich doch det [mm] (2^{2}) [/mm] + [mm] det(3^{2}) [/mm]
das ist jedoch nicht dasselbe,als wenn ich die matrizen zuerst multipliziere und dann die determinante anwende...

Bezug
                        
Bezug
Gramsche Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 13.05.2008
Autor: Merle23


> das ist mir auch klar,aber man soll mit dieser formel
> irgendwie die determinante einer nicht-quadratischen matrix
> ausrechnen können,
>  

Nein, mit dieser Formel berechnet man die Determinante von [mm] A*A^T, [/mm] denn es steht ja da [mm] det(A*A^T)=... [/mm]

> ok,falls nicht,wie wäre es aber wenn ich zb für a die 1x2
> matrix (2 3) einsetze, was bedeutet die rechte seite,
> eigentlich doch det [mm](2^{2})[/mm] + [mm]det(3^{2})[/mm]
> das ist jedoch nicht dasselbe,als wenn ich die matrizen
> zuerst multipliziere und dann die determinante anwende...

Also was bei euch [mm] A^{k_1...k_m} [/mm] heisst, dass kann ich nicht wissen, dass muss bei euch im Skript stehen. Ich geh' davon aus, dass [mm] A^{k_1...k_m} [/mm] die Matrix ist, die entsteht, wenn man die Spalten [mm] k_1...k_m [/mm] von der Matrix A nimmt. Damit hätte man dann eine [mm] m\times [/mm] m Matrix, von der man die Determinante berechnen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de