www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Greensch-fkt./Wellenglrichung
Greensch-fkt./Wellenglrichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Greensch-fkt./Wellenglrichung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 27.08.2005
Autor: schizzlemynizzle

Hallo,
Ich versuche die folgende DGL zu lösen:
[mm] \partial^{2}U/ \partial t^{2} [/mm] - [mm] c^{2} [/mm] * [mm] \partial^{2}U/ \partial x^{2} [/mm] =  [mm] \delta [/mm] ( x - s, t - r) . Außerdem Soll gelten:-  [mm] \infty [/mm] < x <  [mm] \infty [/mm] und
0  [mm] \le [/mm] t  [mm] \le [/mm] T. s, r, c und T sind Konstanten.  Es gelten die Randbedingungen
U(x,T)= [mm] \partial [/mm] U(x,T)/ [mm] \partial [/mm] t =0.
Ich hab den Tip bekommen bei Gleichung bezüglich x eine Fouriertransformation durchzuführen. Leider komm ich dann nicht weiter.
ich erhalte nach der Transformation der Gleichung.
[mm] \partial^{2}F/ \partial t^{2} [/mm] + [mm] c^{2} [/mm] * [mm] k^{2} [/mm] *F =  [mm] \bruch{1}{ \wurzel{2*pi}} *e^{- i*k*s} [/mm] * [mm] \delta [/mm] (t - r). F soll die Fouriertransformierte von U sein.  Die Randbedingungen dieser DGL sind doch nun:F(k,T)= [mm] \partial [/mm] F(k,T)/ [mm] \partial [/mm] t =0.   Jetzt weiß ich leider nicht weiter. Vielleicht hat jemand von euch einen Tip wie ich nun verfahren soll.
Hab ich irgendwo Fehler gemacht?
freundlich Grüße und schon mal vielen Dank im voraus, Jürgen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Greensch-fkt./Wellenglrichung: Fourier einer Deltafunktion
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 31.08.2005
Autor: kuroiya

Hallo Jürgen

Wies ausschaut, hast du die Transformation ganz gut durchgeführt, nur die Deltafunktion ist wohl nicht ganz astrein transformiert worden. Ne Deltafunktion Fouriertransformiert ist immer ne Konstante, wodurch sich deine Gleichung ein wenig vereinfacht.

[mm] \frac{\partial^2 F}{\partial t^2} [/mm] + [mm] c^{2}k^{2}F [/mm] = [mm] \delta(t [/mm] - r)*const.

Wir haben diese Konstante früher immer 1 gewählt, soweit ich mich erinnere (man kann den Umrechnungsfaktor auf U, bzw. F abschieben, und hats so leichter zum Rechnen). Also stehst du vor folgender Gleichung:

[mm] \frac{\partial^2 F}{\partial t^2} [/mm] + [mm] c^{2}k^{2}F [/mm] = [mm] \delta(t [/mm] - r)

Ich würde die Gleichung jetzt ganz allgemein lösen... erst homogene Gleichung, dann partikuläre Lösung der inhomogenen, zusammenaddieren (ich denk, du weisst, wie das geht). Und dann, wenn du n F hast, die Randbedingungen benutzen. Zurücktransformieren. Fertig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de