www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzen
Grenzen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:16 Mo 30.08.2010
Autor: capablanca

Aufgabe
Berechnen Sie das Flächenintegral der Funktion
f (x, y) = [mm] e^{x/y} [/mm] über die Fläche, die im ersten Quadranten (x ≥ 0, y ≥ 0) von den Kurven y = 1 und y = √x begrenzt wird.

Hallo, also ich kann die Lösung dieser aufgabe nachvolziehen ich verstehe nur nicht ganz wie man auf die Grenzen kommt und würde mich über Tipps freuen.

[mm] \integral_{0}^{1}(\integral_{\wurzel{x}}^{1}{e^{x/y} dx})dy=\integral_{0}^{1}(\integral_{0}^{y^2}{e^{x/y} dx})dy [/mm]

Also auf Grenze [mm] \integral_{0}^{1} [/mm] kommt man wohl durch folgenden Hinweis
" die im ersten Quadranten (x ≥ 0, y ≥ 0) " aber ich kann leider nicht genau nachvolziehen wie?

Und wie kommt man von [mm] \integral_{\wurzel{x}}^{1} [/mm] zu [mm] \integral_{0}^{y^2}? [/mm]
Mir ist klar, dass y = [mm] \wurzel{x} [/mm] -> [mm] y^2 [/mm] = x aber auf die Grenze [mm] \integral_{0}^{y^2} [/mm] würde ich von alleine nicht kommen.


Lg

        
Bezug
Grenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Mo 30.08.2010
Autor: wauwau

Etwas mit der Reihenfolge der Integrale kann bei dir nicht stimmen.
(denn die integrationsgrenze kann nicht [mm] $\sqrt{x}$ [/mm] sein, wenn du nach $dx$ integrierst
vertausche dx und dy und dann erkennst du wahrscheinlich die Lösung


Bezug
        
Bezug
Grenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 30.08.2010
Autor: leduart

Hallo
beim ersten Integral stellst du dir das (hoffentlich skizzierte Gebiet in Streifen parallel zur y- Achse vor, integrierst erst jeden streifen, also in y richtung, dann in x-Richtung. dabei fängt y bei [mm] \wurzel{x} [/mm] an und hört bei 1 auf, die Reihenfolge ist dann dy dx also stehts bei dir falsch.
beim Zweiten zerlegst du in Streifen parallel zur x Achse die gehen von x=0 bis [mm] x=y^2, [/mm] du integrierst dann die einzelnen Streifen der Breite dy   über x und dann "addierst du die Streifen von y=0 bis 1 (weil sich da die 2 Kurven schneiden.
Gruss leduart


Bezug
                
Bezug
Grenzen: danke für die Erklärung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Di 31.08.2010
Autor: capablanca

Danke, aber ich muss wohl Integration noch einwenig üben um das Thema komplett zuverstehen.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de