www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Mo 31.12.2007
Autor: domenigge135

Hallo!
Ich habe mal eine kurze und knappe Frage:
Ich habe die Folge [mm] \bruch{1}{n+1}(\bruch{n^3+3n-1}{n^2}+3n) [/mm] und soll den Grenzwert bestimmen. Den Rechenweg hin zu meinem Beweis spar ich mir mal jetzt, da es mir auf folgenden Satz ankommt: Die Folge [mm] (x_n) [/mm] heißt konvergent gegen a [mm] \in\IR, [/mm] wenn es zu jedem [mm] \epsilon [/mm] > 0 eine natürliche Zahl [mm] \IN [/mm] gibt, so dass [mm] |x_n-a|<\epsilon, [/mm] für alle [mm] n\ge\IN. [/mm]
Als Grenzwert erhalte ich [mm] \limes_{n\rightarrow\infty}x_n=4. [/mm] Mein Problem ist jetzt folgendes:
Diesen Beweis durchzurechnen wäre ja im Prinzip kein Problem. Nur welche Zahlen >0 setze ich für [mm] \epsilon [/mm] ein? Die zwischen 0 und 4? Verstehe das irgendwie noch nicht so ganz!

        
Bezug
Grenzwert: epsilon beliebig
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 31.12.2007
Autor: Loddar

Hallo domenigge!


Der Wert [mm] $\varepsilon$ [/mm] ist beliebig wählbar (nur positiv muss er sein). Denn dieses [mm] $\varepsilon$ [/mm] gibt die Umgebung um den Grenzwert an, in welcher ab einem bestimmten $N_$ alle nachfolgenden Folgeglieder liegen.

Meistens bis öfters wird auch gar kein konkretes [mm] $\varepsilon$ [/mm] vorgegeben, sondern für allgemeines [mm] $\varepsilon$ [/mm] ein [mm] $N(\varepsilon)$ [/mm] ermittelt.


Gruß
Loddar


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mo 31.12.2007
Autor: domenigge135

Gut Dankeschön. Ich habe dann nur noch eine kleine Bitte und wünsche dann auch schon einen guten Rutsch ins neue Jahr:-). Ich nehme mal eine einfache Folge: [mm] a_n=\bruch{2n+16}{n+5} \limes_{n\rightarrow\infty}a_n=2 [/mm]
laut definition wäre dann für [mm] \epsilon=0,3: [/mm]
[mm] |\bruch{2n+16}{n+5}-2|<0,3 [/mm] Das würde ja dann, wenn ich alles richtig verstanden habe, heißen, dass der Abstand des Gliedes [mm] a_n [/mm] von 2 weniger als 0,3 ist.
Ich würde das jetzt folgendermaßen rechnen:
[mm] |\bruch{2n+16}{n+5}-2|=|\bruch{2n+16-2(n+5)}{n+5}|=|\bruch{2n+16-2n-10}{n+5}|=|\bruch{6}{n+5}|=\bruch{6}{n+5} [/mm]

nun habe ich noch folgendes dazustehen:
[mm] \bruch{6}{n+5}<0,3\Rightarrow\bruch{n+5}{6}>\bruch{1}{0,3} \gdw n+5>\bruch{6}{0,3} \gdw [/mm] n+5>20 [mm] \gdw [/mm] n>15

Und daraus folgt, dass ab [mm] n_0=16 [/mm] alle weiteren Folgeglieder dazwischen liegen.

Könntet ihr das mal alles überprüfen??? Wäre echt cool!!!

Bezug
                        
Bezug
Grenzwert: stimmt so!
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 31.12.2007
Autor: Loddar

Hallo domenigge!


[daumenhoch] Alles richtig so!


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Mo 31.12.2007
Autor: domenigge135

Super dankeschön. Ich wünsche euch dann allen einen guten rutsch ins neue Jahr.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de