www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Di 28.10.2008
Autor: babsbabs

Aufgabe
Ich brauche den Grenzwert von folgendem Ausdruck (keine Reihe oder so - ist nur ein Teil  den ich für ein Bsp brauche):

[mm] \bruch{n^3*2^n}{3^n} [/mm]

ich dachte mir, dass ich das quotientenkriterium in limesform nehme:

= [mm] \bruch{3^n(n+1)^3*2*2n}{3*3^n*n^3*2n} [/mm]
= [mm] \bruch{2(n+1)^3}{3*n^3} [/mm]
[mm] =\bruch{2*(n^3+3n^2+3n+1)}{3n^3} [/mm]
= [mm] \bruch{2}{3}+\bruch{2}{n}+\bruch{2}{n^2}+\bruch{2}{3n^3} [/mm]

dh mein grenzwert ist [mm] \bruch{2}{3} [/mm]

lieg ich soweit richtig - oder muss ich den grenzwert anders bestimmten ?



        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Di 28.10.2008
Autor: statler

Hi Barbara!

> Ich brauche den Grenzwert von folgendem Ausdruck (keine
> Reihe oder so - ist nur ein Teil  den ich für ein Bsp
> brauche):
>  
> [mm]\bruch{n^3*2^n}{3^n}[/mm]
>  ich dachte mir, dass ich das quotientenkriterium in
> limesform nehme:
>
> = [mm]\bruch{3^n(n+1)^3*2*2n}{3*3^n*n^3*2n}[/mm]
>  = [mm]\bruch{2(n+1)^3}{3*n^3}[/mm]
>  [mm]=\bruch{2*(n^3+3n^2+3n+1)}{3n^3}[/mm]
>  =
> [mm]\bruch{2}{3}+\bruch{2}{n}+\bruch{2}{n^2}+\bruch{2}{3n^3}[/mm]
>  
> dh mein grenzwert ist [mm]\bruch{2}{3}[/mm]

Aber welcher Grenzwert ist das jetzt? Der des Quotienten q. Wie sieht dann der Grenzwert von [mm] \bruch{n^3*2^n}{3^n} [/mm] aus?

Gruß
Dieter

Bezug
        
Bezug
Grenzwert: Monotonie
Status: (Antwort) fertig Status 
Datum: 10:39 Di 28.10.2008
Autor: Roadrunner

Hallo babs!


Du hast hier nicht den Grenzwert der genannten Folge ermittelt, sondern den Grenzwert des  Ausdrucks [mm] $\bruch{a_{n+1}}{a_n}$ [/mm] .

Damit hast Du nachgewiesen, dass die Folge [mm] $a_n$ [/mm] (zumindest ab einem bestimmten [mm] $n_0$ [/mm] ) streng monoton fallend ist.

Um den Grenzwert der Folge zu ermitteln, kannst Du hier z.B. (nach einer kurzen Umformung) MBde l'Hospital anwenden:
[mm] $$\bruch{n^3*2^n}{3^n} [/mm] \ = \ [mm] \bruch{n^3}{\bruch{3^n}{2^n}} [/mm] \ = \ [mm] \bruch{n^3}{\left(\bruch{3}{2}\right)^n}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 28.10.2008
Autor: babsbabs

danke mal für eure zahlreichen antworten, ich spinne das bsp mal weiter mit l'hopital

also: [mm] \bruch{n^3}{(\bruch{3}{2})^n} [/mm]
= lim [mm] \bruch{f(n)'}{g(n)'} [/mm] = [mm] \bruch{3n^2}{(\bruch{3}{2})^n*ln(\bruch{3}{2})} [/mm]

Ableitung des Teils über dem Bruchstrich: 6n

Ableitung des Teils unter dem Bruchstrich - Anwendung Produktregel:

u' = [mm] (\bruch{3}{2})^n [/mm] u = [mm] \bruch{(\bruch{3}{2})^n}{ln(\bruch{3}{2})} [/mm]

v = [mm] ln(\bruch{3}{2}) [/mm]  v' = [mm] \bruch{2}{3}*0 [/mm] (durch die innere ableitung von 2/3)

einsetzen in die produktregel:

[mm] (\bruch{3}{2})^n*ln\bruch{3}{2} [/mm] dh ich komm immer wieder auf den term von dem ich ausgegangen bin

dh nächster schritt l'hopital

[mm] \bruch{6n}{(\bruch{3}{2})^n*ln\bruch{3}{2}} [/mm]
[mm] =\bruch{6}{(\bruch{3}{2})^n*ln\bruch{3}{2}} [/mm]

dh ich sehe ich habe oben nur mehr eine konstante - und unten etwas was ständig wächst wenn mein n wächst...

dh grenzwert 0

Bezug
                        
Bezug
Grenzwert: Korrektur
Status: (Antwort) fertig Status 
Datum: 07:51 Mi 29.10.2008
Autor: Roadrunner

Hallo Barbara!


> also: [mm]\bruch{n^3}{(\bruch{3}{2})^n}[/mm]  = lim [mm]\bruch{f(n)'}{g(n)'}[/mm] =  [mm]\bruch{3n^2}{(\bruch{3}{2})^n*ln(\bruch{3}{2})}[/mm]
>  
> Ableitung des Teils über dem Bruchstrich: 6n

[ok]

  

> Ableitung des Teils unter dem Bruchstrich - Anwendung Produktregel:

Warum? [mm] $\ln\left(\bruch{3}{2}\right)$ [/mm] ist doch ein konstanter Faktor.


> u' = [mm](\bruch{3}{2})^n[/mm] u =  [mm]\bruch{(\bruch{3}{2})^n}{ln(\bruch{3}{2})}[/mm]

andersrum:  $u \ = \ [mm] \left(\bruch{3}{2}\right)^n [/mm] \ \ \ [mm] \Rightarrow [/mm] \ \ \ \ u' \ = \ [mm] \left(\bruch{3}{2}\right)^n*\ln\left(\bruch{3}{2}\right)$ [/mm]

  

> v = [mm]ln(\bruch{3}{2})[/mm]  v' = [mm]\bruch{2}{3}*0[/mm] (durch die innere ableitung von 2/3)

also: $v' \ = \ 0$

  

> einsetzen in die produktregel:
>
> [mm](\bruch{3}{2})^n*ln\bruch{3}{2}[/mm] dh ich komm immer wieder
> auf den term von dem ich ausgegangen bin

[notok] Da fehlt was beim Einsetzen:
$$(u*v)' \ = \ u'*v+u*v' \ = \ [mm] \left(\bruch{3}{2}\right)^n*\ln\left(\bruch{3}{2}\right)*\ln\left(\bruch{3}{2}\right)+\left(\bruch{3}{2}\right)^n*0 [/mm] \ = \ [mm] \left(\bruch{3}{2}\right)^n*\left[\ln\left(\bruch{3}{2}\right)\right]^2$$ [/mm]


> dh nächster schritt l'hopital
>
> [mm]\bruch{6n}{(\bruch{3}{2})^n*ln\bruch{3}{2}}[/mm] [mm]=\bruch{6}{(\bruch{3}{2})^n*ln\bruch{3}{2}}[/mm]

[notok] Folgefehler. Es muss heißen:
$$... \ = \ [mm] \limes_{n\rightarrow\infty}\bruch{6}{\left(\bruch{3}{2}\right)^n*\left[\ln\left(\bruch{3}{2}\right)\right]^3}$$ [/mm]

  

> dh ich sehe ich habe oben nur mehr eine konstante - und
> unten etwas was ständig wächst wenn mein n wächst...
>
> dh grenzwert 0

[ok] Diese Argumentatation stimmt.


Gruß vom
Roadrunner



Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Di 28.10.2008
Autor: fred97

Noch eine Idee:

Sei [mm] a_n [/mm] =  [mm] \bruch{n^3\cdot{}2^n}{3^n}. [/mm]

Deine Rechnung zeigt, dass die Reihe [mm] \summe_{n=1}^{\infty}a_n [/mm] konvergiert (Quotientenkriterium), also ist die Folge der Reihenglieder, also [mm] (a_n), [/mm] eine Nullfolge.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de