www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Limes
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 19.11.2008
Autor: studi08

Aufgabe
Berechne den Grenzwert
$ [mm] \limes_{n\rightarrow\(1}(\bruch{1}{1-x}- \bruch{3}{1-x^3}) [/mm] $

Zuerst habe ich den Nenner gleichnamig gemacht :

$ [mm] \limes_{n\rightarrow\(1}(\bruch{(1-x^3)-3(1-x)}{(1-x)(1-x^3)}) [/mm] $ = $ [mm] \limes_{n\rightarrow\(1}(\bruch{-x^3-3x-2}{(1-x)(1-x^3)}) [/mm] $

Ist dies der richtige Ansatz?Ich seh momentan nicht wie es weitergehen soll.

Besten Dank schon mal im voraus für eure Hilfe!

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mi 19.11.2008
Autor: abakus


> Berechne den Grenzwert
> [mm]\limes_{n\rightarrow\(1}(\bruch{1}{1-x}- \bruch{3}{1-x^3})[/mm]
>  
> Zuerst habe ich den Nenner gleichnamig gemacht :
>  
> [mm]\limes_{n\rightarrow\(1}(\bruch{(1-x^3)-3(1-x)}{(1-x)(1-x^3)})[/mm]
> =
> [mm]\limes_{n\rightarrow\(1}(\bruch{-x^3-3x-2}{(1-x)(1-x^3)})[/mm]
>  
> Ist dies der richtige Ansatz?Ich seh momentan nicht wie es
> weitergehen soll.
>  

Hallo,
der Hauptnenner ist zu groß, um was Vernünftiges zu erkennen. Es ist [mm] 1-x^3=(1-x)(x^2+x+1). [/mm]
Gruß Abakus




> Besten Dank schon mal im voraus für eure Hilfe!


Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 19.11.2008
Autor: schachuzipus

Hallo,

> Berechne den Grenzwert
> [mm]\limes_{n\rightarrow\(1}(\bruch{1}{1-x}- \bruch{3}{1-x^3})[/mm]

Hier und im Weiteren meinst du sicher [mm] $\lim\limits_{\red{x}\to 1}...$ [/mm]

>  
> Zuerst habe ich den Nenner gleichnamig gemacht :
>  
> [mm]\limes_{n\rightarrow\(1}(\bruch{(1-x^3)-3(1-x)}{(1-x)(1-x^3)})[/mm]
> =
> [mm] $\limes_{n\rightarrow\(1}(\bruch{-x^3\red{+}3x-2}{(1-x)(1-x^3)})$ [/mm]

Hmmm, das ist ne Minusklammer $-3(-x)=+3x$ !!!

>  
> Ist dies der richtige Ansatz?Ich seh momentan nicht wie es
> weitergehen soll.

Alternativ zu abakus' Vorschlag kannst du das so machen.

Wenn du nun mal alles im Nenner ausmultiplizierst, siehst du, dass das Biest bei direktem Grenzübergang [mm] $x\to [/mm] 1$ gegen den unbestimmten Ausdruck [mm] $\frac{0}{0}$ [/mm] strebt.

Falls du darsfst und sie kennst, benutze 2mal die Regel von de l'Hôpital, um den Grenzwert abzufischen ...

>  
> Besten Dank schon mal im voraus für eure Hilfe!


LG

schachuzipus

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Mi 19.11.2008
Autor: studi08

Vielen Dank für eure Ideen.Ich wende beide mal an und bei Bedarf werde ich mich wieder melden.

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mi 19.11.2008
Autor: studi08

@ schachuzipus:

Ich setze $ [mm] \limes_{x\rightarrow\(1}(\bruch{-x^3+3x-2}{-1-x-x^3+x^4}) [/mm] $ nun in die l'Hopital-Regel ein und dies ergibt [mm] \bruch{-3x^3+3}{-1-3x^2+4x^3}. [/mm]

Du hast geschrieben ich soll die Regel 2 Mal anwenden.Ich weiss aber nicht wie ich es ein zweites Mal anwenden soll.

Kannst du mir da weiterhelfen?

Studi08



Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mi 19.11.2008
Autor: Al-Chwarizmi


> Ich setze
> [mm]\limes_{x\rightarrow\(1}(\bruch{-x^3+3x-2}{-1-x-x^3+x^4})[/mm]
> nun in die l'Hopital-Regel ein und dies ergibt
> [mm]\bruch{-3x^3+3}{-1-3x^2+4x^3}.[/mm]
>  
> Du hast geschrieben ich soll die Regel 2 Mal anwenden.Ich
> weiss aber nicht wie ich es ein zweites Mal anwenden soll.
>  
> Kannst du mir da weiterhelfen?
>  
> Studi08


Dass man  l'Hôpital ein zweites Mal braucht,
sieht man daran, dass für x=1 immer noch
Zähler=0 und Nenner=0 wird.

Wenn du nicht weisst, wie das gehen soll, schau
zuerst nochmal genau nach, was die Regel denn
wirklich aussagt !

Bezug
                                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mi 19.11.2008
Autor: studi08

Dank für den Hinweis.Somit muss ich also noch ein zweites Mal die Regel von l^Hopital gebrauchen.

Dann muss ich also l^Hopital bei $ [mm] \limes_{x\rightarrow\(1}(\bruch{-3x^2+3}{-1-3x^2+4x^3}) [/mm] $ anwenden.

Dies gibt $ [mm] \bruch{-6x}{-6x+12x^2}. [/mm] $ = $ [mm] \bruch{x}{x-2}. [/mm] $ = $ [mm] \bruch{1}{-1}. [/mm] $ = -1 für x->-1

Dies erscheint mir aber ziemlich kurios.stimmt das wirklich?

Bezug
                                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mi 19.11.2008
Autor: schachuzipus

Hallo nochmal,

> Dank für den Hinweis.Somit muss ich also noch ein zweites
> Mal die Regel von l^Hopital gebrauchen.

der arme Mann heißt Guillaume François Antoine, Marquis de L'Hôpital

>  
> Dann muss ich also l^Hopital bei
> [mm]\limes_{x\rightarrow\(1}(\bruch{-3x^2+3}{-1-3x^2+4x^3})[/mm]
> anwenden.
>  
> Dies gibt [mm] $\bruch{-6x}{-6x+12x^2} [/mm] = [mm] \bruch{x}{x-2\red{x^2}}$ [/mm]

entweder kürzt du -6 oder -6x ...

$ = [mm] \bruch{1}{-1} [/mm] = -1$ für [mm] $x\to\red{+}1$ [/mm] [daumenhoch]

>  
> Dies erscheint mir aber ziemlich kurios.stimmt das
> wirklich?

Aber klar, wieso erscheint es dir kurios?

LG

schachuzipus


Bezug
                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:01 Mi 19.11.2008
Autor: Herby

Hallo mein Lieber :-)

> Hallo nochmal,
>  
> > Dank für den Hinweis.Somit muss ich also noch ein zweites
> > Mal die Regel von l^Hopital gebrauchen.
>  
> der arme Mann heißt Guillaume François Antoine, Marquis de
> L'Hôpital

da hast du aber das Krankenhaus verunstaltet ;-)


Liebe Grüße
Herby

Bezug
                                                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:17 Mi 19.11.2008
Autor: schachuzipus

Bonsoir Herby,

vous pouvez appeler ce Monsieur "M. de l'Hospital" ou

"M. de l'Hôpital", c'est la mème chose.

C'est à dire: la choix est la vôtre ;-)

Bonne soireé

schachuzipus

Bezug
                                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Mi 19.11.2008
Autor: Herby

Hi,

das ist gaaar nicht die gleiche Schoose ;-)


Bonne nuit et au revoir

Herby


Bezug
                                                                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 19.11.2008
Autor: schachuzipus

[lol]

[gutenacht]

schachuzipus


Bezug
                                                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Mi 19.11.2008
Autor: studi08

Pardonnez-moi!J'espere qu'il n`y a pas de francais ici,sinon j'aurais un problem...

Bonne soiree et merci encore une fois!

Bezug
                                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:36 Do 20.11.2008
Autor: Al-Chwarizmi


> C'est à dire: la choix est la vôtre     [kopfschuettel]


     pardon, mais c'est le choix ...   ;-)


Bezug
                                                                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Do 20.11.2008
Autor: schachuzipus


> > C'est à dire: la choix est la vôtre     [kopfschuettel]
>  
>
> pardon, mais c'est le choix ...   ;-)

Oh wei oh wei ;-)

Alors,  le choix est le vôtre ;-)

Danke Al

LG

schachuzipus

>  


Bezug
                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:02 Mi 19.11.2008
Autor: studi08

Weil ich bisher noch kaum eine Aufgabe gelöst habe bei der ein negativer Wert für einen Grenzwert herausgekommen ist.Vielen Dank für deine Ratschläge und schönen Abend noch!

Bezug
                                                        
Bezug
Grenzwert: positiv
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Do 20.11.2008
Autor: Al-Chwarizmi


> Weil ich bisher noch kaum eine Aufgabe gelöst habe bei der
> ein negativer Wert für einen Grenzwert herausgekommen
> ist.

Da sieht man wieder einmal, wie positiv denkende Menschen
die Mathelehrer doch sind !       ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de