www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzwert
Grenzwert < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Di 10.02.2009
Autor: Esperanza

Aufgabe
Ich soll die beiden iterierten Grenzwerte für die Stelle (0,0) errechnen.

[mm] z=\bruch{x^2-2x+3y}{x+y} [/mm]

Erstmal weiß ich nicht was ein "iterierter" Grenzwert ist. Ich hab gegoogelt wie wild ich find es nicht. Ist das sowas wie links- und rechtseitiger GW???

Den Punkt (0,0) muss ich untersuchen weil man ja nicht durch 0 teilen darf.
Aber wie?? Ich find keinen Anfang. Ich weiß das es nicht so schwer ist aber trotzdem. Muss ich jetzt partiell ableiten??

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Di 10.02.2009
Autor: Marcel

Hallo,

> Ich soll die beiden iterierten Grenzwerte für die Stelle
> (0,0) errechnen.
>  
> [mm]z=\bruch{x^2-2x+3y}{x+y}[/mm]
>  Erstmal weiß ich nicht was ein "iterierter" Grenzwert ist.
> Ich hab gegoogelt wie wild ich find es nicht. Ist das sowas
> wie links- und rechtseitiger GW???

nein, damit ist gemeint, Du sollst für [mm] $f(x,y):=\bruch{x^2-2x+3y}{x+y}$ [/mm] untersuchen, wie es mit
[mm] $$\lim_{x \to 0} \lim_{y \to 0} [/mm] f(x,y)$$
und
[mm] $$\lim_{y \to 0} \lim_{x \to 0} [/mm] f(x,y)$$
  
aussieht. (Beim der ersten Grenzwertbetrachtung läßt man zuerst $y [mm] \to [/mm] 0$ laufen, und danach $x [mm] \to [/mm] 0$. Bei der zweiten läßt man zunächst $x [mm] \to [/mm] 0$ und danach $y [mm] \to [/mm] 0$ laufen.)

> Den Punkt (0,0) muss ich untersuchen weil man ja nicht
> durch 0 teilen darf.

Von müssen kann da keine Rede sein. Aber der Punkt ist natürlich interessant, andere wären vll. langweiliger (wobei hier vll. auch Punkte [mm] $(x,\,y)=(x,\,-x)$ [/mm] interessant sein könnten).

>  Aber wie?? Ich find keinen Anfang. Ich weiß das es nicht
> so schwer ist aber trotzdem. Muss ich jetzt partiell
> ableiten??

Was Du machen musst, steht oben.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de