www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: rekursiven definierte Folge
Status: (Frage) beantwortet Status 
Datum: 21:24 Mo 31.01.2011
Autor: gotoxy86

Aufgabe
[mm]x_n_+_1=\frac{3x_n^4-4x_n^2+5}{4x_n^3-8x_n}[/mm] mit [mm]x_1=2[/mm] und ohne Beweis darf ich annehmen [mm]x_n \ge 2[/mm]

Ansatz: [mm]S=\limes_{n\rightarrow\infty}x_n=\limes_{n\rightarrow\infty}x_n_+_1[/mm]

Rechnung: [mm]\Rightarrow S=\frac{3s^4-4s^2+5}{4s^3-8s} \Rightarrow s^4-4s^2-5=0 \Rightarrow t^2-4t-5=0 \Rightarrow t_1_/_2=\frac{4\pm\wurzel{16+20}}{2} \Rightarrow t_1=5 \vee t_2=-1 \Rightarrow s_1=\wurzel{5} \vee -\wurzel{5}[/mm]

Das Ergebnis jedoch ist [mm] x_2=2.3125 [/mm]

Was habe ich falsch gemacht?


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Mo 31.01.2011
Autor: pyw

Hi,
> [mm]x_n_+_1=\frac{3x_n^4-4x_n^2+5}{4x_n^3-8x_n}[/mm] mit [mm]x_1=2[/mm] und
> ohne Beweis darf ich annehmen [mm]x_n \ge 2[/mm]
>  Ansatz:
> [mm]s=\limes_{n\rightarrow\infty}x_n=\limes_{n\rightarrow\infty}x_n_+_1[/mm]
>  
> Rechnung: [mm]\Rightarrow s=\frac{3s^4-4s^2+5}{4s^3-8s} \Rightarrow s^4-4s^2-5=0 \Rightarrow t^2-4t-5=0 \Rightarrow t_1_/_2=\frac{4\pm\wurzel{16+20}}{2} \Rightarrow t_1=5 \vee t_2=-1 \Rightarrow s_1=\wurzel{5} \vee -\wurzel{5}[/mm]
>  
> Das Ergebnis jedoch ist [mm]x_2=2.3125[/mm]
>  
> Was habe ich falsch gemacht?
>  

Wo ist das Problem? Du hast herausgefunden [mm] x_n\to\sqrt{5}, n\to\infty. [/mm]
Abgesehen davon, dass du den Beweis noch etwas ausformulieren könntest (Substitution [mm] s^2=t, [/mm] ...), ist alles in Ordnung.
[mm] x_2 [/mm] muss ja noch lange nicht der Grenzwert sein ;-)


Gruß, pyw

Bezug
        
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Do 10.02.2011
Autor: gotoxy86

Aufgabe
[mm] \bruch{n^{n+2}}{(n+1)^n}\left(\bruch{1}{n+2}-\bruch{1}{n+7}\right) [/mm]

[mm] \bruch{n^{n+2}}{(n+1)^n}\bruch{5}{n^2+9n+14} [/mm]



Nun weiß ich nicht mehr weiter, ich möchte gern den Grenzwert bestimmen.


Wie kann ich dden Exponenten N wegkreigen?

Bezug
                
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Do 10.02.2011
Autor: reverend

Hallo gotoxy,

diese Aufgabe hat mit der letzten doch nichts zu tun. Mach für neue Aufgaben lieber auch einen neuen Thread auf, bitte.

Hier ist folgendes zu tun:


>
> [mm]\bruch{n^{n+2}}{(n+1)^n}\left(\bruch{1}{n+2}-\bruch{1}{n+7}\right)[/mm]
>  
> [mm]\bruch{n^{n+2}}{(n+1)^n}\bruch{5}{n^2+9n+14}[/mm]
>  
>
> Nun weiß ich nicht mehr weiter, ich möchte gern den
> Grenzwert bestimmen.
>  
>
> Wie kann ich dden Exponenten N wegkreigen?

Es ist [mm] \bruch{n^{n+2}}{(n+1)^n}\bruch{5}{n^2+9n+14}=\left(\bruch{n}{n+1}\right)^n*\bruch{5n^2}{n^2+9n+14}=\left(1+\bruch{-1}{n}\right)^n*\cdots [/mm]

Damit solltest Du den Grenzwert [mm] \tfrac{5}{e} [/mm] eigentlich leicht finden.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de