www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Grenzwert
Grenzwert < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:58 Sa 21.05.2011
Autor: Tanja26

Aufgabe
a) Bestimmen Sie die kleinste Konstante c so, dass [mm] ln(1+e^t) b) Existiert der Grenzwert [mm] \limes_{n\rightarrow\infty}\bruch{1}{n}\integral_{0}^{1}{ln(1+e^{nf(n)}) dx} [/mm] für jeder reellwertige Funktion f [mm] \in L^1? [/mm] Falls er existiert, geben Sie ihn an!


Bei Aufgabe a) habe ich weiteres gemacht [mm] c>ln(1+e^t)-t [/mm] , [mm] c>ln(1+e^t)-ln(e^t) [/mm] , [mm] \Rightarrow c>ln(\bruch{1+e^t}{e^t}) [/mm]
ich glaube so ist dass richtig, aber bei Aufgabe b) habe ich Probleme,ich weiß das ich da Satz von Lebesgue benutzen muss,aber trotzdem komme ich nicht weiter mit Integral
Vielleicht kann mir jemand paar Tipps geben ,wie ich dass machen muss.
Danke für die Hilfe!

Bei Aufgabe b)ist  Fehler drin es muss lauten
[mm] \limes_{n\rightarrow\infty}\integral_{0}^{1}{ln(1+e^{nf(x))} dx}[/mm]

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Sa 21.05.2011
Autor: fred97


> a) Bestimmen Sie die kleinste Konstante c so, dass
> [mm]ln(1+e^t)
>  b) Existiert der Grenzwert
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{n}\integral_{0}^{1}{ln(1+e^{nf(n)}) dx}[/mm]


Das ist nicht besonders sinnvoll, denn der Integrand hängt von x nicht ab ! Wie lautet es korrekt ?


> für jeder reellwertige Funktion f [mm]\in L^1?[/mm] Falls er
> existiert, geben Sie ihn an!
>  Bei Aufgabe a) habe ich weiteres gemacht [mm]c>ln(1+e^t)-t[/mm] ,
> [mm]c>ln(1+e^t)-ln(e^t)[/mm] , [mm]\Rightarrow c>ln(\bruch{1+e^t}{e^t})[/mm]
>  
> ich glaube so ist dass richtig,

Na ja, Du sollst das kleinste c ausfindig machen, für das gilt:

             [mm] c>ln(\bruch{1+e^t}{e^t})[/mm]   für jedes t>0.

Dazu überlege Dir, dass [mm] \bruch{1+e^t}{e^t}<2 [/mm] ist für jedes t>0 und dass C=2 die kleinste Konstante mit

                                 [mm] \bruch{1+e^t}{e^t}
ist. Dann ist c=ln(2)

FRED


> aber bei Aufgabe b) habe
> ich Probleme,ich weiß das ich da Satz von Lebesgue
> benutzen muss,aber trotzdem komme ich nicht weiter mit
> Integral
>  Vielleicht kann mir jemand paar Tipps geben ,wie ich dass
> machen muss.
>  Danke für die Hilfe!
>  


Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Sa 21.05.2011
Autor: Tanja26

Aufgabe
Bei Aufgabe b)ist  Fehler drin es muss lauten
[mm] \limes_{n\rightarrow\infty}\integral_{0}^{1}{ln(1+e^{nf(x))} dx} [/mm]



Bezug
                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:29 So 22.05.2011
Autor: fred97


> Bei Aufgabe b)ist  Fehler drin es muss lauten
> [mm]\limes_{n\rightarrow\infty}\integral_{0}^{1}{ln(1+e^{nf(x))} dx}[/mm]

Wo ist das 1/n vorm Integral geblieben ?

FRED

>  
>  


Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:16 So 22.05.2011
Autor: Tanja26


> > Bei Aufgabe b)ist  Fehler drin es muss lauten
> >
> [mm]\limes_{n\rightarrow\infty}\integral_{0}^{1}{ln(1+e^{nf(x))} dx}[/mm]
>  
> Wo ist das 1/n vorm Integral geblieben ?
>  
> FRED
>  >  
> >  

>  ja natürlich habe ihn vergessen

[mm]\limes_{n\rightarrow\infty}\bruch{1}{n}\integral_{0}^{1}{ln(1+e^{nf(x))} dx}[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de