www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: cos
Status: (Frage) beantwortet Status 
Datum: 19:12 Mi 06.07.2011
Autor: bandchef

Aufgabe
Berechnen Sie: [mm] $\lim_{x\to \infty} \frac{cos(x^2)}{x}$ [/mm]

Wie berechnet man diesen Grenzwert? de l'Hospital machts nur schwieriger, höchste Potenz ausklammern geht auch nicht weil man ja aus einem cos() keine Potenzen bzw. Variablen ausklammern darf. Da bin ich doch richtig dabei, dass man das nicht darf, oder?

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Mi 06.07.2011
Autor: Niladhoc

Tipp: Majorisiere!

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mi 06.07.2011
Autor: bandchef

laut wikipedia darf man das so amchen:

[mm] $\lim_{x \to \infty} \frac{cos(x^2)}{x} [/mm] = [mm] \lim_{x \to \infty} \integral \frac{cos(x^2)}{x} [/mm] dx = ...$

Wie aber sieht's dann mit den Grenzen aus? In wikipedia steht da ein großes Omega an der Untergrenze und das war's. Das verstehe ich aber nicht. Oder integriert man unbestimmt und lässt dann den limes drauf los?

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mi 06.07.2011
Autor: Al-Chwarizmi


> laut wikipedia darf man das so machen:
>  
> [mm]\lim_{x \to \infty} \frac{cos(x^2)}{x} = \lim_{x \to \infty} \integral \frac{cos(x^2)}{x} dx = ...[/mm]     [haee]
>  
> Wie aber sieht's dann mit den Grenzen aus? In wikipedia
> steht da ein großes Omega an der Untergrenze und das
> war's. Das verstehe ich aber nicht. Oder integriert man
> unbestimmt und lässt dann den limes drauf los?


Bei deiner Aufgabe gibt's doch überhaupt nichts zu integrieren ! Benütze einfach die Tatsache, dass die Cosinusfunktion beschränkt ist !

LG   Al-Chw.


Bezug
                                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Mi 06.07.2011
Autor: bandchef

Die Cosinusfunktion ist ja zwischen -1 und 1 beschränkt. Da nun x gegen unendlich strebt, wird der Cosinus wohl 1 werden, der Nenner hingegen unendlich. Das heißt ich hab dann die Situation 1 geteilt unendlich was ja wiederum 0 wäre. Stimmt das so?

Bezug
                                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 06.07.2011
Autor: Marcel

Hallo,

> Die Cosinusfunktion ist ja zwischen -1 und 1 beschränkt.
> Da nun x gegen unendlich strebt, wird der Cosinus wohl 1
> werden,

nein, nur: Der Kosinus wird betragsmäßig sicher kleinergleich 1 bleiben!

> der Nenner hingegen unendlich. Das heißt ich hab
> dann die Situation 1 geteilt unendlich was ja wiederum 0
> wäre. Stimmt das so?

Fast. Der Fehler in Deiner Argumenation ist, dass Du GLAUBST, dass
[mm] $$\lim_{x \to \infty}\cos(x^2)\red{=1}$$ [/mm]
gilt. Das ist aber Quatsch, denn
[mm] $$\not\exists \lim_{x \to \infty}\cos(x^2)$$ [/mm]
(Warum? Überlege Dir erstmal,warum [mm] $\lim_{x \to \infty}\cos(x)$ [/mm] nicht existiert, danach ist die Analogie einfach!)

In Wahrheit gilt:
$$0 [mm] \le \left|\frac{\cos(x^2)}{x}\right| \le [/mm] 1/x$$
für jedes $x > [mm] 0\,.$ [/mm]

Jetzt läßt Du $x [mm] \to \infty$ [/mm] laufen, und siehst erstmal
[mm] $$\lim_{x \to \infty}0=0 \le \lim_{x \to \infty}\left|\frac{\cos(x^2)}{x}\right| \le 0=\lim_{x \to \infty} [/mm] (1/x)$$
[mm] $$\Rightarrow \lim_{x \to \infty}|\cos(x^2)/x|=0\,.$$ [/mm]

Damit ist wegen der Stetigkeit der Betragsfunktion sicherlich [mm] $\lim_{x \to \infty} \frac{\cos(x^2)}{x}$ [/mm] (falls existent) eine Nullstelle der Betragsfunktion. Fazit? (Beachte: Existenz des Limes ergibt sich dann wegen der Eindeutigkeit der Nullstelle der Betragsfunktion!)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de