www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:56 Do 16.08.2012
Autor: DonC

Aufgabe
Bestimmen sie den Grenzwert der folgenden Reihe:
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}} [/mm]

Hallo allerseits,
ich komme beim bestimmen dieses Grenzwertes nicht richtig weiter.
Ich kann die Reihe auf die Form [mm] \summe_{n=0}^{\infty} \bruch{(-1)^{n}}{4^{n}}+\bruch{1}{4^{n}} [/mm] bringen was zu [mm] \summe_{n=0}^{\infty} (\bruch{-1}{4})^{n}+(\bruch{1}{4})^{n} [/mm] führt. Jedoch komme ich hier nicht weiter, da sich hieraus keine Teleskopsumme und keine harmonische Reihe ergibt und ich nichts anderes erkennen kann.
Kann mir hier jemand weiterhelfen? Das wäre sehr nett.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
MfG DonC

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Do 16.08.2012
Autor: abakus


> Bestimmen sie den Grenzwert der folgenden Reihe:
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}[/mm]
>  Hallo
> allerseits,
>  ich komme beim bestimmen dieses Grenzwertes nicht richtig
> weiter.

Hallo,
hast du schon bemerkt, dass jeder zweite Summand Null ist?
Gruß Abakus

> Ich kann die Reihe auf die Form [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}}{4^{n}}+\bruch{1}{4^{n}}[/mm]
> bringen was zu [mm]\summe_{n=0}^{\infty} (\bruch{-1}{4})^{n}+(\bruch{1}{4})^{n}[/mm]
> führt. Jedoch komme ich hier nicht weiter, da sich hieraus
> keine Teleskopsumme und keine harmonische Reihe ergibt und
> ich nichts anderes erkennen kann.
>  Kann mir hier jemand weiterhelfen? Das wäre sehr nett.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  MfG DonC


Bezug
                
Bezug
Grenzwert: Idee
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 16.08.2012
Autor: DonC

Hallo abakus,
danke für deine schnelle Antwort. Das jeder zweiter Summand Null ergibt ist mir aufgefallen, ich kann daraus jedoch nichts sinnvolles folgern, zumindest gilt: [mm] \summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}= \summe_{n=0}^{\infty} \bruch{(-1)^{2n}+1}{4^{2n}}+\summe_{n=0}^{\infty} \bruch{(-1)^{2n+1}+1}{4^{2n+1}}, [/mm] wobei der zweite Term immer Null ergibt und somit [mm] \summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}= \summe_{n=0}^{\infty} \bruch{(-1)^{2n}+1}{4^{2n}} [/mm] gilt.
Könntest du mir bitte nochmals weiterhelfen?

MfG DonC

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Do 16.08.2012
Autor: abakus


> Hallo abakus,
>  danke für deine schnelle Antwort. Das jeder zweiter
> Summand Null ergibt ist mir aufgefallen, ich kann daraus
> jedoch nichts sinnvolles folgern, zumindest gilt:
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}= \summe_{n=0}^{\infty} \bruch{(-1)^{2n}+1}{4^{2n}}+\summe_{n=0}^{\infty} \bruch{(-1)^{2n+1}+1}{4^{2n+1}},[/mm]
> wobei der zweite Term immer Null ergibt und somit
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}= \summe_{n=0}^{\infty} \bruch{(-1)^{2n}+1}{4^{2n}}[/mm]
> gilt.
>  Könntest du mir bitte nochmals weiterhelfen?

Was ist denn [mm](-1)^{2n}[/mm]?
Und was ist [mm]4^{2n}[/mm] nach Anwendung gewisser Potenzgesetze?
Gruß Abakus

>  
> MfG DonC


Bezug
                                
Bezug
Grenzwert: Ende
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Do 16.08.2012
Autor: DonC

Vielen Dank abakus und reverend,
ich habe es nun zu später Stunde endlich hinbekommen mit [mm] (-1)^{2n}=1 [/mm] bzw. [mm] 4^{2n}=16^{n}, [/mm] somit erhalte ich eine harmonische Reihe mit [mm] \summe_{n=0}^{\infty} (\bruch{1}{4})^{2n}+(\bruch{1}{4})^{2n}= 2\summe_{n=0}^{\infty} (\bruch{1}{16})^{n}=\bruch{32}{15} [/mm]

Bezug
                                        
Bezug
Grenzwert: Falscher Begriff
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Do 16.08.2012
Autor: Richie1401


> Vielen Dank abakus und reverend,
>  ich habe es nun zu später Stunde endlich hinbekommen mit
> [mm](-1)^{2n}=1[/mm] bzw. [mm]4^{2n}=16^{n},[/mm] somit erhalte ich eine
> harmonische Reihe mit [mm]\summe_{n=0}^{\infty} (\bruch{1}{4})^{2n}+(\bruch{1}{4})^{2n}= 2\summe_{n=0}^{\infty} (\bruch{1}{16})^{n}=\bruch{32}{15}[/mm]
>  

Abend,
Ergebnis richtig, allerdings ist es eine geometrische Reihe.

Gruß.

Bezug
                                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Do 16.08.2012
Autor: abakus


> Vielen Dank abakus und reverend,
>  ich habe es nun zu später Stunde endlich hinbekommen mit
> [mm](-1)^{2n}=1[/mm] bzw. [mm]4^{2n}=16^{n},[/mm] somit erhalte ich eine
> harmonische Reihe mit

geometrisch, nicht harmonisch...

Sonst stimmt es.
Gruß Abakus


[mm]\summe_{n=0}^{\infty} (\bruch{1}{4})^{2n}+(\bruch{1}{4})^{2n}= 2\summe_{n=0}^{\infty} (\bruch{1}{16})^{n}=\bruch{32}{15}[/mm]

>  


Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Do 16.08.2012
Autor: reverend

Hallo DonC,

wenn ich mich mal an abakus anhänge:
Und hast Du schon bemerkt, wo die "Nicht-Null-Glieder" so hinstreben? Ist die Reihe also konvergent?

Du wirst hier nicht umhin kommen, sie aufzuspalten und damit neu zu formulieren. Schmeiß die "Null-Glieder" raus und bring den Rest in eine gewohnte Reihenform (durch Substitution der Laufvariablen). Dann findest Du die Lösung im Handumdrehen.

Grüße
reverend


Bezug
        
Bezug
Grenzwert: elementar"er"
Status: (Antwort) fertig Status 
Datum: 23:34 Do 16.08.2012
Autor: Marcel

Hallo,

> Bestimmen sie den Grenzwert der folgenden Reihe:
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}[/mm]

warum wurde hier nicht einfach so gerechnet? (Ich schreibe der Einfachheit wegen [mm] $\sum:=\sum_{n=0}^\infty$ [/mm] - es ist ja klar, was die Laufvariable ist und wo die Grenzen!)

[mm] $$\sum \bruch{(-1)^{n}+1}{4^{n}}=( \sum (-1/4)^n [/mm] ) [mm] +\sum (1/4)^n=\frac{1}{1-\frac{-1}{4}}+\frac{1}{1-\frac{1}{4}}=\frac{4}{5}+\frac{4}{3}=\frac{12+20}{15}=\frac{32}{15}\,.$$ [/mm]

Die Formel [mm] $\sum q^n=\frac{1}{1-q}$ [/mm] gilt für alle $|q| [mm] <1\,,$ [/mm] und [mm] $\sum (a_n+b_n)=(\sum a_n)+\sum b_n$ [/mm] bei Konvergenz beider Reihen rechterhand!

(Anscheinend beachtenswert: Auch $q:=-1/4$ erfüllt [mm] $|q|\,<1\,,$ [/mm] denn $|-1/4|=1/4 [mm] <\, 1\,.$) [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Fr 17.08.2012
Autor: DonC

Hallo Marcel,
Danke dir für deine Lösungsvariante, welche mir etwas schneller erscheint.

Gruß DonC

Bezug
        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 Do 16.08.2012
Autor: Marcel

Hallo,

> Bestimmen sie den Grenzwert der folgenden Reihe:
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}+1}{4^{n}}[/mm]

und weil's so spaßig ist, eine Minimalvariante von Abakus Vorschlag:
[mm] $$\sum \frac{(-1)^n+1}{4^n}=\frac{1}{8}\sum \frac{16}{16^n}=\frac{1}{8}*\left(16+\sum (1/16)^n\right)=\frac{1}{8}*\left(16+\frac{1}{1-\frac{1}{16}}\right)=2+\frac{1}{8}*\frac{16}{15}=\frac{32}{15}\,.$$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de