www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Grenzwert + Integral
Grenzwert + Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert + Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:04 Di 16.08.2011
Autor: T_sleeper

Aufgabe
Betrachte das Integral [mm] \frac{1}{\delta}\int_{t}^{t+\delta}\int_{-\infty}^{\infty}a(x,\tau)dxd\tau\leq\frac{1}{\delta}\int_{s}^{s+\delta}\int_{-\infty}^{\infty}a(x,\tau)dxd\tau [/mm] für eine beliebige integrierbare Funktion [mm] a(x,t),0\leq s\leq [/mm] t und [mm] 0<\delta
Zeigen Sie, dass für [mm] \delta\rightarrow0 [/mm] folgt:

[mm] \int_{-\infty}^{\infty}a(x,t)dx\leq\int_{-\infty}^{\infty}a(x,s)dx [/mm] fast überall für [mm] 0\leq s\leq [/mm] t.

Hallo,

das ist für mich ein Problem. Ich weiß da garnicht wie ich anfangen soll. Mir macht schon das [mm] \delta [/mm] vor dem Integral Probleme. Gibt es einen Tipp, wie ich anfangen kann, bzw. weiterkomme?

        
Bezug
Grenzwert + Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Di 16.08.2011
Autor: Blech

Hi,

für nicht-stetige Funktionen muß das nicht stimmen.

[mm] $a(x,\tau)=1_{[0,1]}(x)*(1_{(0,t]}(\tau)+1_{(s,2s]}(\tau))$ [/mm]

Oder lieg ich hier grob falsch?

ciao
Stefan

Bezug
                
Bezug
Grenzwert + Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 30.08.2011
Autor: T_sleeper


>  
> für nicht-stetige Funktionen muß das nicht stimmen.
>  
> [mm]a(x,\tau)=1_{[0,1]}(x)*(1_{(0,t]}(\tau)+1_{(s,2s]}(\tau))[/mm]
>  
> Oder lieg ich hier grob falsch?
>  
> ciao
>  Stefan


Ok, das mag sein.

Also ich spezifiziere das mal etwas. Meine Funktion [mm] a(x,\tau) [/mm] ist nämlich stetig. Es gilt [mm] a(x,\tau)=|u(x,\tau)-v(x,\tau)|. [/mm] Dabei sind u,v zwei beschränkte Funktionen von [mm] \mathbb{R}\times [0,\infty), [/mm]  die jeweils in [mm] C([0,\infty),L^1(\mathbb{R})\cap L^{\infty}(\mathbb{R} \times (0,\infty)) [/mm] sind.
Weil u und v beschränkt sind, ist a Lipschitz stetig und damit stetig.
Ich hab das trotzdem leider noch nicht so ganz hinbekommen.

Bezug
                        
Bezug
Grenzwert + Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 30.08.2011
Autor: fred97


> >  

> > für nicht-stetige Funktionen muß das nicht stimmen.
>  >  
> > [mm]a(x,\tau)=1_{[0,1]}(x)*(1_{(0,t]}(\tau)+1_{(s,2s]}(\tau))[/mm]
>  >  
> > Oder lieg ich hier grob falsch?
>  >  
> > ciao
>  >  Stefan
>
>
> Ok, das mag sein.
>  
> Also ich spezifiziere das mal etwas. Meine Funktion
> [mm]a(x,\tau)[/mm] ist nämlich stetig. Es gilt
> [mm]a(x,\tau)=|u(x,\tau)-v(x,\tau)|.[/mm] Dabei sind u,v zwei
> beschränkte Funktionen von [mm]\mathbb{R}\times [0,\infty),[/mm]  
> die jeweils in [mm]C([0,\infty),L^1(\mathbb{R})\cap L^{\infty}(\mathbb{R} \times (0,\infty))[/mm]
> sind.



Was ist denn hier los ? Oben sagst Du, dass u und v auf [mm]\mathbb{R}\times [0,\infty)[/mm]  def. sind.

Dann sind aber plötzlich

  u,v [mm] \in[/mm]  [mm]C([0,\infty),L^1(\mathbb{R})\cap L^{\infty}(\mathbb{R} \times (0,\infty))[/mm] .

Was soll denn das für ein Raum sein.

          

>  Weil u und v beschränkt sind, ist a Lipschitz stetig

Das glaube ich aber nicht.

FRED

> und
> damit stetig.
>  Ich hab das trotzdem leider noch nicht so ganz
> hinbekommen.  


Bezug
                                
Bezug
Grenzwert + Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:51 Di 30.08.2011
Autor: T_sleeper


> > >  

> > > für nicht-stetige Funktionen muß das nicht stimmen.
>  >  >  
> > > [mm]a(x,\tau)=1_{[0,1]}(x)*(1_{(0,t]}(\tau)+1_{(s,2s]}(\tau))[/mm]
>  >  >  
> > > Oder lieg ich hier grob falsch?
>  >  >  
> > > ciao
>  >  >  Stefan
> >
> >
> > Ok, das mag sein.
>  >  
> > Also ich spezifiziere das mal etwas. Meine Funktion
> > [mm]a(x,\tau)[/mm] ist nämlich stetig. Es gilt
> > [mm]a(x,\tau)=|u(x,\tau)-v(x,\tau)|.[/mm] Dabei sind u,v zwei
> > beschränkte Funktionen von [mm]\mathbb{R}\times [0,\infty),[/mm]  
> > die jeweils in [mm]C([0,\infty),L^1(\mathbb{R})\cap L^{\infty}(\mathbb{R} \times (0,\infty))[/mm]
> > sind.
>  
>
>
> Was ist denn hier los ? Oben sagst Du, dass u und v auf
> [mm]\mathbb{R}\times [0,\infty)[/mm]  def. sind.
>
> Dann sind aber plötzlich
>  
> u,v [mm]\in[/mm]  [mm]C([0,\infty),L^1(\mathbb{R})\cap L^{\infty}(\mathbb{R} \times (0,\infty))[/mm]
> .
>  
> Was soll denn das für ein Raum sein.
>  
>
> >  Weil u und v beschränkt sind, ist a Lipschitz stetig

>
> Das glaube ich aber nicht.
>  
> FRED
>  
> > und
> > damit stetig.
>  >  Ich hab das trotzdem leider noch nicht so ganz
> > hinbekommen.  
>  

Oh Entschuldigung, du hast vollkommen recht, das macht so überhaupt keinen Sinn. Es sind u,v [mm]\in[/mm]  [mm]C([0,\infty),L^1(\mathbb{R}))\cap L^{\infty}(\mathbb{R} \times (0,\infty))[/mm].
Diese kleine, aber wichtige Klammer, habe ich übersehen.

So nun ist aber die Funktion G:= [mm] g(\tau):=\int_{-\infty}^{\infty}a(x,\tau)dx [/mm] stetig bzgl. [mm] L^{1} [/mm] für jedes [mm] t\in[0,\infty), [/mm] wenn ich das richtig verstanden habe.

Wenn ich also mal [mm] \frac{1}{\delta}\int_{t}^{t+\delta}g(\tau)d\tau [/mm] betrachte und den Grenzwert für [mm] \delta\to0 [/mm] berechne, dann sollte da g(t) herauskommen.

Ich weiß nicht, inwiefern das, was ich jetzt mache, korrekt ist, weil ich mit dieser [mm] L^{1} [/mm] Stetigkeit noch so meine Probleme habe. Weiterhin braucht man dafür eigtl. das Riemann Integral. Also Verbesserungen nehme ich gerne entgegen. Vielleicht kann man das auch verallgemeinern für meinen Fall

Es ist [mm] g\geq0. [/mm] Der Mittelwertsatz der Integralrechnung liefert mir doch dann ein Zahl [mm] \xi_{\delta} [/mm] zwischen t und [mm] t+\delta [/mm] derart, dass

[mm] \int_{t}^{t+\delta}g(\tau)d\tau=\delta g(\xi_{\delta}). [/mm] Für [mm] \delta\to0 [/mm] folgt dann mit der Stetigkeit (?) von g, dass [mm] \frac{1}{\delta}\int_{t}^{t+\delta}g(\tau)d\tau=g(\xi_{\delta})\to [/mm] g(t).

Bezug
                                        
Bezug
Grenzwert + Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 01.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de